analistica/slides/sections/2.md

119 lines
2.0 KiB
Markdown
Raw Normal View History

2020-06-11 00:21:44 +02:00
# Landau distribution
2020-06-05 16:36:19 +02:00
2020-06-10 16:23:33 +02:00
## Landau PDF
2020-06-05 16:36:19 +02:00
2020-06-11 19:36:14 +02:00
:::: {.columns align=center}
::: {.column width=50%}
2020-06-10 16:23:33 +02:00
$$
L(x) = \frac{1}{\pi} \int \limits_{0}^{+ \infty}
dt \, e^{-t \ln(t) -xt} \sin (\pi t)
$$
:::
2020-06-05 16:36:19 +02:00
2020-06-10 16:23:33 +02:00
::: {.column width=50%}
![](images/landau-pdf.pdf)
:::
::::
2020-06-05 16:36:19 +02:00
2020-06-11 19:36:14 +02:00
. . .
\begin{center}
No closed form for \alert{ANYTHING}
2020-06-11 19:36:14 +02:00
\end{center}
2020-06-07 00:02:20 +02:00
## Landau median
::::: {.columns}
:::: {.column width=50%}
::: incremental
- The median of $f$ is defined by
$$
F(m) = \int_{-\infty}^m fdx = \frac{1}{2}
$$
- Equivalently
$$
m = F^{-1}\left(\frac{1}{2}\right)
$$
2020-06-12 14:31:08 +02:00
- PDF Numerical integration up to $1/2$ or QDF is needed
:::
::::
::: {.column width=50%}
![](images/median.pdf)
:::
:::::
2020-06-06 02:53:49 +02:00
## Landau median
2020-06-07 00:02:20 +02:00
2020-06-07 14:32:03 +02:00
- CDF computed by numerical integration
- QDF computed by numerical root-finding
2020-06-06 02:53:49 +02:00
2020-06-10 16:23:33 +02:00
\setbeamercovered{}
\begin{center}
\begin{tikzpicture}[remember picture]
\node at (0,0) (here) {$m_L\ex = 1.3557804...$};
\pause
\node [opacity=0.5, xscale=0.35, yscale=0.25 ] at (here) {\includegraphics{images/high.png}};
\end{tikzpicture}
\end{center}
\setbeamercovered{transparent}
2020-06-06 02:53:49 +02:00
2020-06-07 00:02:20 +02:00
## Landau mode
- Maximum $\hence \partial_x L(\mu) = 0$
2020-06-07 14:32:03 +02:00
. . .
2020-06-07 00:02:20 +02:00
- Computed by numerical minimization (Brent)
2020-06-10 16:23:33 +02:00
\setbeamercovered{}
\begin{center}
\begin{tikzpicture}[remember picture]
\node at (0,0) (here) {$\mu_L\ex = 0.22278...$};
\pause
\node [opacity=0.5, xscale=0.32, yscale=0.25 ] at (here) {\includegraphics{images/high.png}};
\end{tikzpicture}
\end{center}
\setbeamercovered{transparent}
2020-06-07 00:02:20 +02:00
## Landau FWHM
2020-06-07 14:32:03 +02:00
We need to compute the maximum:
2020-06-07 00:02:20 +02:00
$$
2020-06-07 14:32:03 +02:00
L_{\text{max}} = L(\mu_L)
2020-06-07 00:02:20 +02:00
$$
2020-06-07 14:32:03 +02:00
$$
\text{FWHM} = w = x_+ - x_- \with L(x_{\pm}) = \frac{L_{\text{max}}}{2}
$$
. . .
- Computed by numerical root finding (Brent)
2020-06-07 00:02:20 +02:00
2020-06-10 16:23:33 +02:00
\setbeamercovered{}
\begin{center}
\begin{tikzpicture}[remember picture]
\node at (0,0) (here) {$w_L\ex = 4.018645...$};
\pause
\node [opacity=0.5, xscale=0.32, yscale=0.25 ] at (here) {\includegraphics{images/high.png}};
\end{tikzpicture}
\end{center}
\setbeamercovered{transparent}