sections: reorder the sections in order to add the Landau paragraph
This commit is contained in:
parent
160e218d6c
commit
697fbbce0c
@ -8,16 +8,38 @@ institute:
|
||||
- Università di Milano-Bicocca
|
||||
|
||||
theme: metropolis
|
||||
themeoptions:
|
||||
- titleformat=allcaps
|
||||
aspectratio: 169
|
||||
|
||||
fontsize: 14pt
|
||||
fontsize: 12pt
|
||||
mainfont: Fira Sans
|
||||
mainfontoptions:
|
||||
- BoldFont=Fira Sans
|
||||
|
||||
mathfont: FiraMath-Regular
|
||||
sansfont: Fira Sans
|
||||
|
||||
header-includes: |
|
||||
```{=latex}
|
||||
%% Colors
|
||||
\definecolor{mDarkTeal} {HTML}{020202}
|
||||
\definecolor{mLightBrown}{HTML}{C49D4A}
|
||||
\definecolor{mDarkRed} {HTML}{92182B}
|
||||
|
||||
\definecolor{green} {HTML}{60AC39}
|
||||
\definecolor{red} {HTML}{D73737}
|
||||
\definecolor{blue} {HTML}{6684E1}
|
||||
\definecolor{yellow}{HTML}{CFB017}
|
||||
|
||||
\setbeamercolor{frametitle}{bg=mDarkRed}
|
||||
|
||||
% center images
|
||||
\LetLtxMacro{\oldIncludegraphics}{\includegraphics}
|
||||
\renewcommand{\includegraphics}[2][]{
|
||||
\centering
|
||||
\oldIncludegraphics[#1]{#2}
|
||||
}
|
||||
|
||||
% Misc
|
||||
% "thus" in formulas
|
||||
\DeclareMathOperator{\thus}{%
|
||||
\hspace{30pt} \Longrightarrow \hspace{30pt}
|
||||
@ -27,6 +49,5 @@ header-includes: |
|
||||
\DeclareMathOperator{\with}{%
|
||||
\hspace{30pt} \text{with} \hspace{30pt}
|
||||
}
|
||||
|
||||
```
|
||||
...
|
||||
|
@ -1,63 +1,3 @@
|
||||
---
|
||||
title: Randomness tests of a non-uniform distribution
|
||||
date: \today
|
||||
author:
|
||||
- Giulia Marcer
|
||||
- Michele Guerini Rocco
|
||||
institute:
|
||||
- Università di Milano-Bicocca
|
||||
|
||||
theme: metropolis
|
||||
themeoptions:
|
||||
- titleformat=allcaps
|
||||
aspectratio: 169
|
||||
|
||||
fontsize: 12pt
|
||||
mainfont: Fira Sans
|
||||
mainfontoptions:
|
||||
- BoldFont=Fira Sans
|
||||
|
||||
mathfont: FiraMath-Regular
|
||||
|
||||
header-includes: |
|
||||
```{=latex}
|
||||
%% Colors
|
||||
\definecolor{mDarkTeal} {HTML}{020202}
|
||||
\definecolor{mLightBrown}{HTML}{C49D4A}
|
||||
\definecolor{mDarkRed} {HTML}{92182B}
|
||||
|
||||
\definecolor{green} {HTML}{60AC39}
|
||||
\definecolor{red} {HTML}{D73737}
|
||||
\definecolor{blue} {HTML}{6684E1}
|
||||
\definecolor{yellow}{HTML}{CFB017}
|
||||
|
||||
\setbeamercolor{frametitle}{bg=mDarkRed}
|
||||
|
||||
% center images
|
||||
\LetLtxMacro{\oldIncludegraphics}{\includegraphics}
|
||||
\renewcommand{\includegraphics}[2][]{
|
||||
\centering
|
||||
\oldIncludegraphics[#1]{#2}
|
||||
}
|
||||
|
||||
%% customer macros
|
||||
\DeclareMathOperator{\with}{%
|
||||
\hspace{30pt} \text{with} \hspace{30pt}
|
||||
}
|
||||
|
||||
% "thus" in formulas
|
||||
\DeclareMathOperator{\thus}{%
|
||||
\hspace{30pt} \Longrightarrow \hspace{30pt}
|
||||
}
|
||||
|
||||
% "et" in formulas
|
||||
\DeclareMathOperator{\et}{%
|
||||
\hspace{30pt} \wedge \hspace{30pt}
|
||||
}
|
||||
```
|
||||
...
|
||||
|
||||
|
||||
# Goal
|
||||
|
||||
|
||||
|
@ -1,135 +1,32 @@
|
||||
# Moyal distribution
|
||||
# Landau PDF
|
||||
|
||||
|
||||
## Moyal PDF
|
||||
## Pathological probability distribution
|
||||
|
||||
Because of its fat tail:
|
||||
|
||||
Standard form:
|
||||
$$
|
||||
M(z) = \frac{1}{\sqrt{2 \pi}} \exp
|
||||
\left[ - \frac{1}{2} \left( z + e^{-z} \right) \right]
|
||||
$$
|
||||
\begin{align*}
|
||||
E[x] &\longrightarrow + \infty \\
|
||||
V[x] &\longrightarrow + \infty
|
||||
\end{align*}
|
||||
|
||||
. . .
|
||||
No closed form for parameters.
|
||||
|
||||
More generally:
|
||||
## Landau median
|
||||
|
||||
- location parameter $\mu$
|
||||
- scale parameter $\sigma$
|
||||
The median of a PDF is defined as:
|
||||
|
||||
$$
|
||||
z = \frac{x - \mu}{\sigma}
|
||||
\thus
|
||||
M(x) = \frac{1}{\sqrt{2 \pi} \sigma} \exp
|
||||
\left[ - \frac{1}{2} \left(
|
||||
\frac{x - \mu}{\sigma}
|
||||
+ e^{-\frac{x - \mu}{\sigma}} \right) \right]
|
||||
Q_L(x) = \frac{1}{2}
|
||||
$$
|
||||
|
||||
- CDF computed by numerical integration,
|
||||
- QDF computed by numerical root-finding (Brent)
|
||||
|
||||
## Moyal CDF
|
||||
|
||||
The CDF $F_M(x)$ can be derived by direct integration:
|
||||
$$
|
||||
F_M(x) = \int\limits_{- \infty}^x dy \, M(y)
|
||||
= \frac{1}{\sqrt{2 \pi}} \int\limits_{- \infty}^x dy \, e^{- \frac{y}{2}}
|
||||
e^{- \frac{1}{2} e^{-y}}
|
||||
$$
|
||||
|
||||
. . .
|
||||
|
||||
With the change of variable $z = e^{-\frac{y}{2}}/\sqrt{2}$:
|
||||
$$
|
||||
F_M(x) =
|
||||
\frac{-2 \sqrt{2}}{\sqrt{2 \pi}} \int\limits_{+ \infty}^{f(x)} dz \, e^{- z^2}
|
||||
\with f(x) = \frac{e^{- \frac{x}{2}}}{\sqrt{2}}
|
||||
$$
|
||||
|
||||
|
||||
## Moyal CDF
|
||||
|
||||
Remembering the error function
|
||||
$$
|
||||
\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x dy \, e^{-y^2},
|
||||
$$
|
||||
one finally gets:
|
||||
$$
|
||||
F_M(x) = 1 - \text{erf} \left( \frac{e^{- \frac{x}{2}}}{\sqrt{2}} \right)
|
||||
$$
|
||||
|
||||
|
||||
## Moyal QDF
|
||||
|
||||
The quantile (CDF\textsuperscript{-1}) is found solving:
|
||||
$$
|
||||
y = 1 - \text{erf} \left( \frac{e^{- \frac{x}{2}}}{\sqrt{2}} \right)
|
||||
$$
|
||||
hence:
|
||||
$$
|
||||
Q_M(x) = -2 \ln \left[ \sqrt{2} \, \text{erf}^{-1} (1 - F_M(x)) \right]
|
||||
$$
|
||||
|
||||
|
||||
## Moyal median
|
||||
|
||||
Defined by $\text{CDF}(m) = 1/2$, or $m=\text{QDF}(1/2)$.
|
||||
|
||||
\begin{align*}
|
||||
M(z)
|
||||
&\thus m_M = -2 \ln \left[ \sqrt{2} \,
|
||||
\text{erf}^{-1} \left( \frac{1}{2} \right) \right] \\
|
||||
M_{\mu \sigma}(x)
|
||||
&\thus m_M = \mu -2 \sigma \ln \left[ \sqrt{2} \,
|
||||
\text{erf}^{-1} \left( \frac{1}{2} \right) \right]
|
||||
\end{align*}
|
||||
|
||||
## Moyal mode
|
||||
|
||||
Peak of the PDF:
|
||||
$$
|
||||
\partial_x M(x) = \partial_x \left( \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}
|
||||
\left( x + e^{-x} \right)} \right)
|
||||
= \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}
|
||||
\left( x + e^{-x} \right)} \left( -\frac{1}{2} \right)
|
||||
\left( 1 - e^{-x} \right)
|
||||
$$
|
||||
|
||||
\begin{align*}
|
||||
\partial_x M(z) = 0 &\thus \mu_M = 0 \\
|
||||
\partial_x M_{\mu \sigma}(x) = 0 &\thus \mu_M = \mu \\
|
||||
\end{align*}
|
||||
|
||||
|
||||
## Moyal FWHM
|
||||
|
||||
We need to compute the maximum value:
|
||||
$$
|
||||
M(\mu) = \frac{1}{\sqrt{2 \pi e}} \thus M(x_{\pm}) = \frac{1}{\sqrt{8 \pi e}}
|
||||
$$
|
||||
|
||||
. . .
|
||||
|
||||
which leads to:
|
||||
$$
|
||||
x_{\pm} + e^{-x_{\pm}} = 1 + 2 \ln(2) \thus
|
||||
\begin{cases}
|
||||
x_+ = 1 + 2 \ln(2) + W_0 \left( - \frac{1}{4 e} \right) \\
|
||||
x_- = 1 + 2 \ln(2) + W_{-1} \left( - \frac{1}{4 e} \right)
|
||||
\end{cases}
|
||||
$$
|
||||
|
||||
## Moyal FWHM
|
||||
|
||||
$$
|
||||
x_+ - x_- = W_0 \left( - \frac{1}{4 e} \right)
|
||||
- W_{-1} \left( - \frac{1}{4 e} \right)
|
||||
= 3.590806098...
|
||||
= a
|
||||
m_L = 1.3557804...
|
||||
$$
|
||||
|
||||
\begin{align*}
|
||||
M(z)
|
||||
&\thus \text{FWHM}_M = a \\
|
||||
M_{\mu \sigma}(x)
|
||||
&\thus \text{FWHM}_M = \sigma \cdot a \\
|
||||
\end{align*}
|
||||
o
|
||||
|
@ -1,21 +1,135 @@
|
||||
# Data sample
|
||||
# Moyal distribution
|
||||
|
||||
## Data sample
|
||||
|
||||
The $M(x)$ most similar to $L(x)$ is found by imposing:
|
||||
## Moyal PDF
|
||||
|
||||
- equal mode
|
||||
|
||||
Standard form:
|
||||
$$
|
||||
\mu_M = M_L \approx −0.22278298...
|
||||
$$
|
||||
|
||||
- equal width
|
||||
$$
|
||||
\text{FWHM}_M = \text{FWHM}_L = \sigma \cdot a
|
||||
M(z) = \frac{1}{\sqrt{2 \pi}} \exp
|
||||
\left[ - \frac{1}{2} \left( z + e^{-z} \right) \right]
|
||||
$$
|
||||
|
||||
. . .
|
||||
|
||||
More generally:
|
||||
|
||||
- location parameter $\mu$
|
||||
- scale parameter $\sigma$
|
||||
|
||||
$$
|
||||
\implies \sigma_M \approx 1.1191486
|
||||
z = \frac{x - \mu}{\sigma}
|
||||
\thus
|
||||
M(x) = \frac{1}{\sqrt{2 \pi} \sigma} \exp
|
||||
\left[ - \frac{1}{2} \left(
|
||||
\frac{x - \mu}{\sigma}
|
||||
+ e^{-\frac{x - \mu}{\sigma}} \right) \right]
|
||||
$$
|
||||
|
||||
|
||||
## Moyal CDF
|
||||
|
||||
The CDF $F_M(x)$ can be derived by direct integration:
|
||||
$$
|
||||
F_M(x) = \int\limits_{- \infty}^x dy \, M(y)
|
||||
= \frac{1}{\sqrt{2 \pi}} \int\limits_{- \infty}^x dy \, e^{- \frac{y}{2}}
|
||||
e^{- \frac{1}{2} e^{-y}}
|
||||
$$
|
||||
|
||||
. . .
|
||||
|
||||
With the change of variable $z = e^{-\frac{y}{2}}/\sqrt{2}$:
|
||||
$$
|
||||
F_M(x) =
|
||||
\frac{-2 \sqrt{2}}{\sqrt{2 \pi}} \int\limits_{+ \infty}^{f(x)} dz \, e^{- z^2}
|
||||
\with f(x) = \frac{e^{- \frac{x}{2}}}{\sqrt{2}}
|
||||
$$
|
||||
|
||||
|
||||
## Moyal CDF
|
||||
|
||||
Remembering the error function
|
||||
$$
|
||||
\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x dy \, e^{-y^2},
|
||||
$$
|
||||
one finally gets:
|
||||
$$
|
||||
F_M(x) = 1 - \text{erf} \left( \frac{e^{- \frac{x}{2}}}{\sqrt{2}} \right)
|
||||
$$
|
||||
|
||||
|
||||
## Moyal QDF
|
||||
|
||||
The quantile (CDF\textsuperscript{-1}) is found solving:
|
||||
$$
|
||||
y = 1 - \text{erf} \left( \frac{e^{- \frac{x}{2}}}{\sqrt{2}} \right)
|
||||
$$
|
||||
hence:
|
||||
$$
|
||||
Q_M(x) = -2 \ln \left[ \sqrt{2} \, \text{erf}^{-1} (1 - F_M(x)) \right]
|
||||
$$
|
||||
|
||||
|
||||
## Moyal median
|
||||
|
||||
Defined by $\text{CDF}(m) = 1/2$, or $m=\text{QDF}(1/2)$.
|
||||
|
||||
\begin{align*}
|
||||
M(z)
|
||||
&\thus m_M = -2 \ln \left[ \sqrt{2} \,
|
||||
\text{erf}^{-1} \left( \frac{1}{2} \right) \right] \\
|
||||
M_{\mu \sigma}(x)
|
||||
&\thus m_M = \mu -2 \sigma \ln \left[ \sqrt{2} \,
|
||||
\text{erf}^{-1} \left( \frac{1}{2} \right) \right]
|
||||
\end{align*}
|
||||
|
||||
## Moyal mode
|
||||
|
||||
Peak of the PDF:
|
||||
$$
|
||||
\partial_x M(x) = \partial_x \left( \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}
|
||||
\left( x + e^{-x} \right)} \right)
|
||||
= \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}
|
||||
\left( x + e^{-x} \right)} \left( -\frac{1}{2} \right)
|
||||
\left( 1 - e^{-x} \right)
|
||||
$$
|
||||
|
||||
\begin{align*}
|
||||
\partial_x M(z) = 0 &\thus \mu_M = 0 \\
|
||||
\partial_x M_{\mu \sigma}(x) = 0 &\thus \mu_M = \mu \\
|
||||
\end{align*}
|
||||
|
||||
|
||||
## Moyal FWHM
|
||||
|
||||
We need to compute the maximum value:
|
||||
$$
|
||||
M(\mu) = \frac{1}{\sqrt{2 \pi e}} \thus M(x_{\pm}) = \frac{1}{\sqrt{8 \pi e}}
|
||||
$$
|
||||
|
||||
. . .
|
||||
|
||||
which leads to:
|
||||
$$
|
||||
x_{\pm} + e^{-x_{\pm}} = 1 + 2 \ln(2) \thus
|
||||
\begin{cases}
|
||||
x_+ = 1 + 2 \ln(2) + W_0 \left( - \frac{1}{4 e} \right) \\
|
||||
x_- = 1 + 2 \ln(2) + W_{-1} \left( - \frac{1}{4 e} \right)
|
||||
\end{cases}
|
||||
$$
|
||||
|
||||
## Moyal FWHM
|
||||
|
||||
$$
|
||||
x_+ - x_- = W_0 \left( - \frac{1}{4 e} \right)
|
||||
- W_{-1} \left( - \frac{1}{4 e} \right)
|
||||
= 3.590806098...
|
||||
= a
|
||||
$$
|
||||
|
||||
\begin{align*}
|
||||
M(z)
|
||||
&\thus \text{FWHM}_M = a \\
|
||||
M_{\mu \sigma}(x)
|
||||
&\thus \text{FWHM}_M = \sigma \cdot a \\
|
||||
\end{align*}
|
||||
|
21
slides/sections/4.md
Normal file
21
slides/sections/4.md
Normal file
@ -0,0 +1,21 @@
|
||||
# Data sample
|
||||
|
||||
## Data sample
|
||||
|
||||
The $M(x)$ most similar to $L(x)$ is found by imposing:
|
||||
|
||||
- equal mode
|
||||
$$
|
||||
\mu_M = \mu_L \approx −0.22278298...
|
||||
$$
|
||||
|
||||
- equal width
|
||||
$$
|
||||
\text{FWHM}_M = \text{FWHM}_L = \sigma \cdot a
|
||||
$$
|
||||
|
||||
. . .
|
||||
|
||||
$$
|
||||
\implies \sigma_M \approx 1.1191486
|
||||
$$
|
Loading…
Reference in New Issue
Block a user