slides: start writing something
This commit is contained in:
parent
4115449767
commit
5252ece50f
@ -16,6 +16,8 @@ sansfont: Fira Sans
|
||||
|
||||
header-includes: |
|
||||
```{=latex}
|
||||
|
||||
% Misc
|
||||
% "thus" in formulas
|
||||
\DeclareMathOperator{\thus}{%
|
||||
\hspace{30pt} \Longrightarrow \hspace{30pt}
|
||||
@ -25,7 +27,64 @@ header-includes: |
|
||||
\DeclareMathOperator{\et}{%
|
||||
\hspace{30pt} \wedge \hspace{30pt}
|
||||
}
|
||||
|
||||
```
|
||||
...
|
||||
|
||||
|
||||
# Goal
|
||||
|
||||
|
||||
## Goal
|
||||
|
||||
What?
|
||||
|
||||
- Generate a sample of points from a Moyal PDF
|
||||
- Prove it truly comes from it and not from a Landau PDF
|
||||
|
||||
How?
|
||||
|
||||
- Applying some hypothesis testings
|
||||
|
||||
Why?
|
||||
|
||||
- They are really similar. Historically, the Moyal distribution was utilized in
|
||||
the approximation of the Landau Distribution.
|
||||
|
||||
|
||||
# Two similar distributions
|
||||
|
||||
:::: {.columns .c}
|
||||
::: {.column width=50%}
|
||||
\begin{center}
|
||||
Landau PDF
|
||||
$$
|
||||
L(x) = \frac{1}{\pi} \int \limits_{0}^{+ \infty}
|
||||
dt \, e^{-t \ln(t) -xt} \sin (\pi t)
|
||||
$$
|
||||
\end{center}
|
||||
:::
|
||||
::: {.column width=50%}
|
||||
\begin{center}
|
||||
Moyal PDF
|
||||
$$
|
||||
M(x) = \frac{1}{\sqrt{2 \pi \sigma}} \exp \left( - \frac{x - \mu }{2 \sigma}
|
||||
- \frac{1}{2} e^{- \frac{x -\mu}{\sigma}} \right)
|
||||
$$
|
||||
\end{center}
|
||||
:::
|
||||
::::
|
||||
|
||||
:::: {.columns .c}
|
||||
::: {.column width=50%}
|
||||
![](images/landau-pdf.pdf)
|
||||
:::
|
||||
::: {.column width=50%}
|
||||
![](images/moyal-pdf.pdf)
|
||||
:::
|
||||
::::
|
||||
|
||||
## Two similar distributions
|
||||
|
||||
grafici sovrapposti
|
||||
|
||||
|
93
slides/sections/2.md
Normal file
93
slides/sections/2.md
Normal file
@ -0,0 +1,93 @@
|
||||
# Moyal PDF
|
||||
|
||||
|
||||
# Moyal PDF
|
||||
|
||||
$$
|
||||
M(x) = \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} \left[ x + e^{-x} \right]}
|
||||
$$
|
||||
:::: {.columns .c}
|
||||
::: {.column width=30%}
|
||||
\begin{center}
|
||||
More generally:
|
||||
\end{center}
|
||||
:::
|
||||
::: {.column width=70%}
|
||||
\begin{center}
|
||||
$$
|
||||
\begin{cases}
|
||||
\text{location parameter} \mu \\
|
||||
\text{scale parameter} \sigma
|
||||
\end{cases}
|
||||
$$
|
||||
\end{center}
|
||||
:::
|
||||
::::
|
||||
\vspace{20pt}
|
||||
$$
|
||||
x \rightarrow \frac{x - \mu}{\sigma}
|
||||
$$
|
||||
|
||||
|
||||
## Moyal CDF
|
||||
|
||||
The cumulative distribution function $\mathscr{M}(x)$ can be derived from the
|
||||
pdf $M(x)$ integrating:
|
||||
$$
|
||||
\mathscr{M}(x) = \frac{1}{\sqrt{2 \pi}} \int\limits_{- \infty}^x dy \, M(y)
|
||||
= \frac{1}{\sqrt{2 \pi}} \int\limits_{- \infty}^x dy \, e^{- \frac{1}{2}}
|
||||
e^{- \frac{1}{2} e^{-y}}
|
||||
$$
|
||||
with the change of variable:
|
||||
\begin{align}
|
||||
z = \frac{1}{\sqrt{2}} e^{-\frac{y}{2}}
|
||||
&\thus \frac{dz}{dy} = \frac{-1}{2 \sqrt{2}} e^{-\frac{y}{2}} \\
|
||||
&\thus dy = -2 \sqrt{2} e^{\frac{y}{2}} dz
|
||||
\end{align}
|
||||
hence, the limits of the integral become:
|
||||
\begin{align}
|
||||
y \rightarrow - \infty &\thus z \rightarrow + \infty \\
|
||||
y = x &\thus z = \frac{1}{\sqrt{2}} e^{-\frac{x}{2}} = f(x)
|
||||
\end{align}
|
||||
and the CDF can be rewritten as:
|
||||
$$
|
||||
\mathscr{M}(x) = \frac{1}{2 \pi} \int\limits_{+ \infty}^{f(x)}
|
||||
dz \, (- 2 \sqrt{2}) e^{\frac{y}{2}} e^{- \frac{y}{2}} e^{- z^2}
|
||||
= \frac{-2 \sqrt{2}}{\sqrt{2 \pi}} \int\limits_{+ \infty}^{f(x)}
|
||||
dz e^{- z^2}
|
||||
$$
|
||||
since the `erf` is defines as:
|
||||
$$
|
||||
\text{erf} = \frac{2}{\sqrt{\pi}} \int_0^x dy \, e^{-y^2}
|
||||
$$
|
||||
$$
|
||||
1 = \frac{2}{\sqrt{\pi}} \int_0^{+ \infty} dy \, e^{-y^2}
|
||||
= \frac{2}{\sqrt{\pi}} \int_0^x dy \, e^{-y^2} +
|
||||
\frac{2}{\sqrt{\pi}} \int_x^{+ \infty} dy \, e^{-y^2}
|
||||
= \text{erf}(x) + \frac{2}{\sqrt{\pi}} \int_x^{+ \infty} dy \, e^{-y^2}
|
||||
$$
|
||||
thus:
|
||||
$$
|
||||
\frac{2}{\sqrt{\pi}} \int_x^{+ \infty} dy \, e^{-y^2}
|
||||
1 = \frac{2}{\sqrt{\pi}} \int_0^x dy \, e^{-y^2} +
|
||||
$$
|
||||
|
||||
|
||||
## Moyal mode
|
||||
|
||||
Peak of the PDF
|
||||
$$
|
||||
\partial_x M(x) = \partial_x \left( \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}
|
||||
\left( x + e^{-x} \right)} \right)
|
||||
= \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}
|
||||
\left( x + e^{-x} \right)} \left( -\frac{1}{2} \right)
|
||||
\left( 1 - e^{-x} \right)
|
||||
$$
|
||||
\vspace{15pt}
|
||||
$$
|
||||
\partial_x M(x) = 0 \thus x = 0 \thus x = \mu
|
||||
$$
|
||||
\vspace{15pt}
|
||||
$$
|
||||
\thus \mu = m_L
|
||||
$$
|
Loading…
Reference in New Issue
Block a user