diff --git a/slides/sections/1.md b/slides/sections/1.md index ccc621e..66085a7 100644 --- a/slides/sections/1.md +++ b/slides/sections/1.md @@ -16,6 +16,8 @@ sansfont: Fira Sans header-includes: | ```{=latex} + + % Misc % "thus" in formulas \DeclareMathOperator{\thus}{% \hspace{30pt} \Longrightarrow \hspace{30pt} @@ -25,7 +27,64 @@ header-includes: | \DeclareMathOperator{\et}{% \hspace{30pt} \wedge \hspace{30pt} } + ``` ... + # Goal + + +## Goal + +What? + +- Generate a sample of points from a Moyal PDF +- Prove it truly comes from it and not from a Landau PDF + +How? + +- Applying some hypothesis testings + +Why? + +- They are really similar. Historically, the Moyal distribution was utilized in + the approximation of the Landau Distribution. + + +# Two similar distributions + +:::: {.columns .c} +::: {.column width=50%} + \begin{center} + Landau PDF + $$ + L(x) = \frac{1}{\pi} \int \limits_{0}^{+ \infty} + dt \, e^{-t \ln(t) -xt} \sin (\pi t) + $$ + \end{center} +::: +::: {.column width=50%} + \begin{center} + Moyal PDF + $$ + M(x) = \frac{1}{\sqrt{2 \pi \sigma}} \exp \left( - \frac{x - \mu }{2 \sigma} + - \frac{1}{2} e^{- \frac{x -\mu}{\sigma}} \right) + $$ + \end{center} +::: +:::: + +:::: {.columns .c} +::: {.column width=50%} + ![](images/landau-pdf.pdf) +::: +::: {.column width=50%} + ![](images/moyal-pdf.pdf) +::: +:::: + +## Two similar distributions + +grafici sovrapposti + diff --git a/slides/sections/2.md b/slides/sections/2.md new file mode 100644 index 0000000..d94c928 --- /dev/null +++ b/slides/sections/2.md @@ -0,0 +1,93 @@ +# Moyal PDF + + +# Moyal PDF + +$$ + M(x) = \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} \left[ x + e^{-x} \right]} +$$ +:::: {.columns .c} +::: {.column width=30%} + \begin{center} + More generally: + \end{center} +::: +::: {.column width=70%} + \begin{center} + $$ + \begin{cases} + \text{location parameter} \mu \\ + \text{scale parameter} \sigma + \end{cases} + $$ + \end{center} +::: +:::: +\vspace{20pt} +$$ + x \rightarrow \frac{x - \mu}{\sigma} +$$ + + +## Moyal CDF + +The cumulative distribution function $\mathscr{M}(x)$ can be derived from the +pdf $M(x)$ integrating: +$$ + \mathscr{M}(x) = \frac{1}{\sqrt{2 \pi}} \int\limits_{- \infty}^x dy \, M(y) + = \frac{1}{\sqrt{2 \pi}} \int\limits_{- \infty}^x dy \, e^{- \frac{1}{2}} + e^{- \frac{1}{2} e^{-y}} +$$ +with the change of variable: +\begin{align} + z = \frac{1}{\sqrt{2}} e^{-\frac{y}{2}} + &\thus \frac{dz}{dy} = \frac{-1}{2 \sqrt{2}} e^{-\frac{y}{2}} \\ + &\thus dy = -2 \sqrt{2} e^{\frac{y}{2}} dz +\end{align} +hence, the limits of the integral become: +\begin{align} + y \rightarrow - \infty &\thus z \rightarrow + \infty \\ + y = x &\thus z = \frac{1}{\sqrt{2}} e^{-\frac{x}{2}} = f(x) +\end{align} +and the CDF can be rewritten as: +$$ + \mathscr{M}(x) = \frac{1}{2 \pi} \int\limits_{+ \infty}^{f(x)} + dz \, (- 2 \sqrt{2}) e^{\frac{y}{2}} e^{- \frac{y}{2}} e^{- z^2} + = \frac{-2 \sqrt{2}}{\sqrt{2 \pi}} \int\limits_{+ \infty}^{f(x)} + dz e^{- z^2} +$$ +since the `erf` is defines as: +$$ + \text{erf} = \frac{2}{\sqrt{\pi}} \int_0^x dy \, e^{-y^2} +$$ +$$ + 1 = \frac{2}{\sqrt{\pi}} \int_0^{+ \infty} dy \, e^{-y^2} + = \frac{2}{\sqrt{\pi}} \int_0^x dy \, e^{-y^2} + + \frac{2}{\sqrt{\pi}} \int_x^{+ \infty} dy \, e^{-y^2} + = \text{erf}(x) + \frac{2}{\sqrt{\pi}} \int_x^{+ \infty} dy \, e^{-y^2} +$$ +thus: +$$ + \frac{2}{\sqrt{\pi}} \int_x^{+ \infty} dy \, e^{-y^2} + 1 = \frac{2}{\sqrt{\pi}} \int_0^x dy \, e^{-y^2} + +$$ + + +## Moyal mode + +Peak of the PDF +$$ + \partial_x M(x) = \partial_x \left( \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} + \left( x + e^{-x} \right)} \right) + = \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} + \left( x + e^{-x} \right)} \left( -\frac{1}{2} \right) + \left( 1 - e^{-x} \right) +$$ +\vspace{15pt} +$$ + \partial_x M(x) = 0 \thus x = 0 \thus x = \mu +$$ +\vspace{15pt} +$$ + \thus \mu = m_L +$$