slides: write about the Moyal PDF parameters
Also add the Landau, Moyal and 'both' plots.
This commit is contained in:
parent
de864471e2
commit
95b334322f
32
slides/sections/0.md
Normal file
32
slides/sections/0.md
Normal file
@ -0,0 +1,32 @@
|
||||
---
|
||||
title: Randomness tests of a non-uniform distribution
|
||||
date: \today
|
||||
author:
|
||||
- Giulia Marcer
|
||||
- Michele Guerini Rocco
|
||||
institute:
|
||||
- Università di Milano-Bicocca
|
||||
|
||||
theme: metropolis
|
||||
aspectratio: 169
|
||||
|
||||
fontsize: 14pt
|
||||
mathfont: FiraMath-Regular
|
||||
sansfont: Fira Sans
|
||||
|
||||
header-includes: |
|
||||
```{=latex}
|
||||
|
||||
% Misc
|
||||
% "thus" in formulas
|
||||
\DeclareMathOperator{\thus}{%
|
||||
\hspace{30pt} \Longrightarrow \hspace{30pt}
|
||||
}
|
||||
|
||||
% "with" in formulas
|
||||
\DeclareMathOperator{\with}{%
|
||||
\hspace{30pt} \text{with} \hspace{30pt}
|
||||
}
|
||||
|
||||
```
|
||||
...
|
@ -1,35 +1,3 @@
|
||||
---
|
||||
title: Randomness tests of a non-uniform distribution
|
||||
date: \today
|
||||
author:
|
||||
- Giulia Marcer
|
||||
- Michele Guerini Rocco
|
||||
institute:
|
||||
- Università di Milano-Bicocca
|
||||
|
||||
theme: metropolis
|
||||
aspectratio: 169
|
||||
|
||||
fontsize: 14pt
|
||||
mathfont: FiraMath-Regular
|
||||
sansfont: Fira Sans
|
||||
|
||||
header-includes: |
|
||||
```{=latex}
|
||||
|
||||
% Misc
|
||||
% "thus" in formulas
|
||||
\DeclareMathOperator{\thus}{%
|
||||
\hspace{30pt} \Longrightarrow \hspace{30pt}
|
||||
}
|
||||
|
||||
% "et" in formulas
|
||||
\DeclareMathOperator{\et}{%
|
||||
\hspace{30pt} \wedge \hspace{30pt}
|
||||
}
|
||||
|
||||
```
|
||||
...
|
||||
|
||||
|
||||
# Goal
|
||||
@ -46,16 +14,30 @@ How?
|
||||
|
||||
- Applying some hypothesis testings
|
||||
|
||||
Why?
|
||||
## Why?
|
||||
|
||||
- They are really similar. Historically, the Moyal distribution was utilized in
|
||||
the approximation of the Landau Distribution.
|
||||
The Landau and Moyal PDFs are really similar. Historically, the latter distribution was utilized in
|
||||
the approximation of the Landau Distribution.
|
||||
|
||||
:::: {.columns}
|
||||
::: {.column width=33%}
|
||||
\centering
|
||||
![](images/moyal-photo.jpg){height=130pt}
|
||||
:::
|
||||
::: {.column width=33%}
|
||||
\centering
|
||||
![](images/mondau-photo.jpg){height=130pt}
|
||||
:::
|
||||
::: {.column width=33%}
|
||||
\centering
|
||||
![](images/landau-photo.jpg){height=130pt}
|
||||
:::
|
||||
::::
|
||||
|
||||
# Two similar distributions
|
||||
## Two similar distributions
|
||||
|
||||
:::: {.columns .c}
|
||||
::: {.column width=50%}
|
||||
::: {.column width=50%}
|
||||
\begin{center}
|
||||
Landau PDF
|
||||
$$
|
||||
@ -64,27 +46,27 @@ Why?
|
||||
$$
|
||||
\end{center}
|
||||
:::
|
||||
::: {.column width=50%}
|
||||
::: {.column width=50%}
|
||||
\begin{center}
|
||||
Moyal PDF
|
||||
$$
|
||||
M(x) = \frac{1}{\sqrt{2 \pi \sigma}} \exp \left( - \frac{x - \mu }{2 \sigma}
|
||||
- \frac{1}{2} e^{- \frac{x -\mu}{\sigma}} \right)
|
||||
M(x) = \frac{1}{\sqrt{2 \pi}} \exp \left[ - \frac{1}{2}
|
||||
\left( x + e^{- x} \right) \right]
|
||||
$$
|
||||
\end{center}
|
||||
:::
|
||||
::::
|
||||
|
||||
:::: {.columns .c}
|
||||
::: {.column width=50%}
|
||||
::: {.column width=50%}
|
||||
![](images/landau-pdf.pdf)
|
||||
:::
|
||||
::: {.column width=50%}
|
||||
::: {.column width=50%}
|
||||
![](images/moyal-pdf.pdf)
|
||||
:::
|
||||
::::
|
||||
|
||||
## Two similar distributions
|
||||
|
||||
grafici sovrapposti
|
||||
|
||||
\centering
|
||||
![](images/both-pdf.pdf)
|
||||
|
@ -1,81 +1,97 @@
|
||||
# Moyal PDF
|
||||
# Moyal distribution
|
||||
|
||||
|
||||
# Moyal PDF
|
||||
## Moyal PDF
|
||||
|
||||
$$
|
||||
M(x) = \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} \left[ x + e^{-x} \right]}
|
||||
$$
|
||||
:::: {.columns .c}
|
||||
::: {.column width=30%}
|
||||
\begin{center}
|
||||
More generally:
|
||||
\end{center}
|
||||
:::
|
||||
::: {.column width=70%}
|
||||
\begin{center}
|
||||
$$
|
||||
\begin{cases}
|
||||
\text{location parameter} \mu \\
|
||||
\text{scale parameter} \sigma
|
||||
\end{cases}
|
||||
$$
|
||||
\end{center}
|
||||
:::
|
||||
::::
|
||||
\vspace{20pt}
|
||||
\vspace{10pt}
|
||||
$$
|
||||
x \rightarrow \frac{x - \mu}{\sigma}
|
||||
\text{More generally:} \hspace{15pt}
|
||||
\begin{cases}
|
||||
\text{location parameter:} \quad &\mu_M \\
|
||||
\text{scale parameter:} \quad &\sigma_M
|
||||
\end{cases}
|
||||
$$
|
||||
\vspace{10pt}
|
||||
$$
|
||||
x \rightarrow \frac{x - \mu}{\sigma_M} \thus
|
||||
M_{\mu \sigma_M}(x) = \frac{1}{\sqrt{2 \pi} \sigma_M}
|
||||
e^{-\frac{1}{2} \left[ \frac{x - \mu}{\sigma_M} + e^{- \frac{x - \mu}{\sigma_M}} \right]}
|
||||
$$
|
||||
|
||||
|
||||
## Moyal CDF
|
||||
|
||||
The cumulative distribution function $\mathscr{M}(x)$ can be derived from the
|
||||
The cumulative distribution function $F_M(x)$ can be derived from the
|
||||
pdf $M(x)$ integrating:
|
||||
$$
|
||||
\mathscr{M}(x) = \frac{1}{\sqrt{2 \pi}} \int\limits_{- \infty}^x dy \, M(y)
|
||||
= \frac{1}{\sqrt{2 \pi}} \int\limits_{- \infty}^x dy \, e^{- \frac{1}{2}}
|
||||
e^{- \frac{1}{2} e^{-y}}
|
||||
F_M(x) = \frac{1}{\sqrt{2 \pi}} \int\limits_{- \infty}^x dy \, M(y)
|
||||
= \frac{1}{\sqrt{2 \pi}} \int\limits_{- \infty}^x dy \, e^{- \frac{y}{2}}
|
||||
e^{- \frac{1}{2} e^{-y}}
|
||||
$$
|
||||
|
||||
|
||||
## Moyal CDF
|
||||
|
||||
with the change of variable:
|
||||
\begin{align}
|
||||
$$
|
||||
z = \frac{1}{\sqrt{2}} e^{-\frac{y}{2}}
|
||||
&\thus \frac{dz}{dy} = \frac{-1}{2 \sqrt{2}} e^{-\frac{y}{2}} \\
|
||||
&\thus dy = -2 \sqrt{2} e^{\frac{y}{2}} dz
|
||||
\end{align}
|
||||
hence, the limits of the integral become:
|
||||
\begin{align}
|
||||
y \rightarrow - \infty &\thus z \rightarrow + \infty \\
|
||||
y = x &\thus z = \frac{1}{\sqrt{2}} e^{-\frac{x}{2}} = f(x)
|
||||
\end{align}
|
||||
and the CDF can be rewritten as:
|
||||
$$
|
||||
\mathscr{M}(x) = \frac{1}{2 \pi} \int\limits_{+ \infty}^{f(x)}
|
||||
dz \, (- 2 \sqrt{2}) e^{\frac{y}{2}} e^{- \frac{y}{2}} e^{- z^2}
|
||||
= \frac{-2 \sqrt{2}}{\sqrt{2 \pi}} \int\limits_{+ \infty}^{f(x)}
|
||||
dz e^{- z^2}
|
||||
the CDF can be rewritten as:
|
||||
$$
|
||||
since the `erf` is defines as:
|
||||
F_M(x) =
|
||||
\frac{-2 \sqrt{2}}{\sqrt{2 \pi}} \int\limits_{+ \infty}^{f(x)} dz \, e^{- z^2}
|
||||
\with f(x) = \frac{e^{- \frac{x}{2}}}{\sqrt{2}}
|
||||
$$
|
||||
|
||||
|
||||
## Moyal CDF
|
||||
|
||||
given the definition of the error function `erf`:
|
||||
$$
|
||||
\text{erf} = \frac{2}{\sqrt{\pi}} \int_0^x dy \, e^{-y^2}
|
||||
$$
|
||||
one finally gets:
|
||||
$$
|
||||
1 = \frac{2}{\sqrt{\pi}} \int_0^{+ \infty} dy \, e^{-y^2}
|
||||
= \frac{2}{\sqrt{\pi}} \int_0^x dy \, e^{-y^2} +
|
||||
\frac{2}{\sqrt{\pi}} \int_x^{+ \infty} dy \, e^{-y^2}
|
||||
= \text{erf}(x) + \frac{2}{\sqrt{\pi}} \int_x^{+ \infty} dy \, e^{-y^2}
|
||||
F_M(x) = 1 - \text{erf} \left( \frac{e^{- \frac{x}{2}}}{\sqrt{2}} \right)
|
||||
$$
|
||||
thus:
|
||||
|
||||
|
||||
## Moyal QDF
|
||||
|
||||
The quantile is defined as the inverse of the CDF:
|
||||
$$
|
||||
\frac{2}{\sqrt{\pi}} \int_x^{+ \infty} dy \, e^{-y^2}
|
||||
1 = \frac{2}{\sqrt{\pi}} \int_0^x dy \, e^{-y^2} +
|
||||
F_M(x) = 1 - \text{erf} \left( \frac{e^{- \frac{x}{2}}}{\sqrt{2}} \right)
|
||||
$$
|
||||
hence:
|
||||
$$
|
||||
Q(x) = -2 \ln \left[ \sqrt{2} \, \text{erf}^{(-1)} (1 - F_M(x)) \right]
|
||||
$$
|
||||
|
||||
|
||||
## Moyal median
|
||||
|
||||
The median is defined as the point at which $F_M(x) = 1/2$:
|
||||
\vspace{15pt}
|
||||
$$
|
||||
M(x) \thus
|
||||
m_M = -2 \ln \left[ \sqrt{2} \,
|
||||
\text{erf}^{(-1)} \left( \frac{1}{2} \right) \right]
|
||||
$$
|
||||
\vspace{15pt}
|
||||
$$
|
||||
M_{\mu \sigma_M}(x) \thus
|
||||
m_M = \mu -2 \sigma_M \ln \left[ \sqrt{2} \,
|
||||
\text{erf}^{(-1)} \left( \frac{1}{2} \right) \right]
|
||||
$$
|
||||
|
||||
|
||||
## Moyal mode
|
||||
|
||||
Peak of the PDF
|
||||
\vspace{10pt}
|
||||
$$
|
||||
\partial_x M(x) = \partial_x \left( \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}
|
||||
\left( x + e^{-x} \right)} \right)
|
||||
@ -83,11 +99,43 @@ $$
|
||||
\left( x + e^{-x} \right)} \left( -\frac{1}{2} \right)
|
||||
\left( 1 - e^{-x} \right)
|
||||
$$
|
||||
\vspace{15pt}
|
||||
\vspace{10pt}
|
||||
$$
|
||||
\partial_x M(x) = 0 \thus x = 0 \thus x = \mu
|
||||
\partial_x M(x) = 0 \thus \mu_M = 0
|
||||
$$
|
||||
\vspace{10pt}
|
||||
$$
|
||||
\partial_x M_{\mu \sigma_M}(x) = 0 \thus \mu_M = \mu
|
||||
$$
|
||||
|
||||
|
||||
## Moyal FWHM
|
||||
|
||||
We need to compute the maximum value:
|
||||
$$
|
||||
M(\mu) = \frac{1}{\sqrt{2 \pi e}} \thus M(x_{\pm}) = \frac{1}{\sqrt{8 \pi e}}
|
||||
$$
|
||||
which leads to:
|
||||
$$
|
||||
x_{\pm} + e^{-x_{\pm}} = 1 + 2 \ln(2) \thus
|
||||
\begin{cases}
|
||||
x_+ = a + W_0 \left( - \frac{1}{4 e} \right) \\
|
||||
x_- = a + W_{-1} \left( - \frac{1}{4 e} \right)
|
||||
\end{cases}
|
||||
$$
|
||||
with $a = 1 + 2 \ln(2)$
|
||||
|
||||
|
||||
## Moyal FWHM
|
||||
|
||||
$$
|
||||
\text{FWHM}_L = x_+ - x_- = 3.590806098...
|
||||
$$
|
||||
\vspace{15pt}
|
||||
$$
|
||||
\thus \mu = m_L
|
||||
M(x) \thus \text{FWHM}_M = 3.590806098...
|
||||
$$
|
||||
\vspace{15pt}
|
||||
$$
|
||||
M_{\mu \sigma_M}(x) \thus \text{FWHM}_M = \sigma_M \cdot 3.590806098...
|
||||
$$
|
||||
|
14
slides/sections/3.md
Normal file
14
slides/sections/3.md
Normal file
@ -0,0 +1,14 @@
|
||||
# Data sample
|
||||
|
||||
## Data sample
|
||||
|
||||
The $M(x)$ most similar to $L(x)$ is found by imposing:
|
||||
\vspace{15pt}
|
||||
$$
|
||||
\mu_M = \mu_L \sim = −0.22278298...
|
||||
$$
|
||||
\vspace{15pt}
|
||||
$$
|
||||
\text{FWHM}_M = \text{FWHM}_L = 4.0186457...
|
||||
\thus \sigma_M = 1.1191486
|
||||
$$
|
Loading…
Reference in New Issue
Block a user