2020-06-11 00:21:44 +02:00
|
|
|
|
# Landau distribution
|
2020-06-05 16:36:19 +02:00
|
|
|
|
|
|
|
|
|
|
2020-06-10 16:23:33 +02:00
|
|
|
|
## Landau PDF
|
2020-06-05 16:36:19 +02:00
|
|
|
|
|
2020-06-11 19:36:14 +02:00
|
|
|
|
:::: {.columns align=center}
|
|
|
|
|
::: {.column width=50%}
|
2020-06-10 16:23:33 +02:00
|
|
|
|
$$
|
|
|
|
|
L(x) = \frac{1}{\pi} \int \limits_{0}^{+ \infty}
|
|
|
|
|
dt \, e^{-t \ln(t) -xt} \sin (\pi t)
|
|
|
|
|
$$
|
|
|
|
|
:::
|
2020-06-05 16:36:19 +02:00
|
|
|
|
|
2020-06-10 16:23:33 +02:00
|
|
|
|
::: {.column width=50%}
|
|
|
|
|
![](images/landau-pdf.pdf)
|
|
|
|
|
:::
|
|
|
|
|
::::
|
2020-06-05 16:36:19 +02:00
|
|
|
|
|
2020-06-11 19:36:14 +02:00
|
|
|
|
. . .
|
|
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
|
No closed form for \textcolor{cyclamen}{ANYTHING}
|
|
|
|
|
\end{center}
|
|
|
|
|
|
2020-06-07 00:02:20 +02:00
|
|
|
|
|
2020-06-06 19:40:48 +02:00
|
|
|
|
## Landau median
|
2020-06-05 23:27:21 +02:00
|
|
|
|
|
2020-06-06 19:40:48 +02:00
|
|
|
|
The median of a PDF is defined as:
|
2020-06-05 23:27:21 +02:00
|
|
|
|
|
|
|
|
|
$$
|
2020-06-07 14:32:03 +02:00
|
|
|
|
m = Q \left( \frac{1}{2} \right)
|
2020-06-05 23:27:21 +02:00
|
|
|
|
$$
|
2020-06-06 02:53:49 +02:00
|
|
|
|
|
2020-06-07 00:02:20 +02:00
|
|
|
|
. . .
|
|
|
|
|
|
2020-06-07 14:32:03 +02:00
|
|
|
|
- CDF computed by numerical integration
|
2020-06-06 19:40:48 +02:00
|
|
|
|
- QDF computed by numerical root-finding (Brent)
|
2020-06-06 02:53:49 +02:00
|
|
|
|
|
2020-06-10 16:23:33 +02:00
|
|
|
|
\setbeamercovered{}
|
|
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
|
\begin{tikzpicture}[remember picture]
|
|
|
|
|
\node at (0,0) (here) {$m_L\ex = 1.3557804...$};
|
|
|
|
|
\pause
|
|
|
|
|
\node [opacity=0.5, xscale=0.35, yscale=0.25 ] at (here) {\includegraphics{images/high.png}};
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
|
|
\setbeamercovered{transparent}
|
2020-06-06 02:53:49 +02:00
|
|
|
|
|
2020-06-07 00:02:20 +02:00
|
|
|
|
|
|
|
|
|
## Landau mode
|
|
|
|
|
|
2020-06-09 18:28:53 +02:00
|
|
|
|
- Maximum $\hence \partial_x L(\mu) = 0$
|
2020-06-07 14:32:03 +02:00
|
|
|
|
|
|
|
|
|
. . .
|
|
|
|
|
|
2020-06-07 00:02:20 +02:00
|
|
|
|
- Computed by numerical minimization (Brent)
|
|
|
|
|
|
2020-06-10 16:23:33 +02:00
|
|
|
|
\setbeamercovered{}
|
|
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
|
\begin{tikzpicture}[remember picture]
|
|
|
|
|
\node at (0,0) (here) {$\mu_L\ex = − 0.22278...$};
|
|
|
|
|
\pause
|
|
|
|
|
\node [opacity=0.5, xscale=0.32, yscale=0.25 ] at (here) {\includegraphics{images/high.png}};
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
|
|
\setbeamercovered{transparent}
|
2020-06-07 00:02:20 +02:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## Landau FWHM
|
|
|
|
|
|
2020-06-07 14:32:03 +02:00
|
|
|
|
We need to compute the maximum:
|
|
|
|
|
|
2020-06-07 00:02:20 +02:00
|
|
|
|
$$
|
2020-06-07 14:32:03 +02:00
|
|
|
|
L_{\text{max}} = L(\mu_L)
|
2020-06-07 00:02:20 +02:00
|
|
|
|
$$
|
|
|
|
|
|
2020-06-07 14:32:03 +02:00
|
|
|
|
$$
|
|
|
|
|
\text{FWHM} = w = x_+ - x_- \with L(x_{\pm}) = \frac{L_{\text{max}}}{2}
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
. . .
|
|
|
|
|
|
|
|
|
|
- Computed by numerical root finding (Brent)
|
2020-06-07 00:02:20 +02:00
|
|
|
|
|
2020-06-10 16:23:33 +02:00
|
|
|
|
\setbeamercovered{}
|
|
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
|
\begin{tikzpicture}[remember picture]
|
|
|
|
|
\node at (0,0) (here) {$w_L\ex = 4.018645...$};
|
|
|
|
|
\pause
|
|
|
|
|
\node [opacity=0.5, xscale=0.32, yscale=0.25 ] at (here) {\includegraphics{images/high.png}};
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
|
|
\setbeamercovered{transparent}
|