94 lines
2.3 KiB
Markdown
94 lines
2.3 KiB
Markdown
|
# Moyal PDF
|
||
|
|
||
|
|
||
|
# Moyal PDF
|
||
|
|
||
|
$$
|
||
|
M(x) = \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} \left[ x + e^{-x} \right]}
|
||
|
$$
|
||
|
:::: {.columns .c}
|
||
|
::: {.column width=30%}
|
||
|
\begin{center}
|
||
|
More generally:
|
||
|
\end{center}
|
||
|
:::
|
||
|
::: {.column width=70%}
|
||
|
\begin{center}
|
||
|
$$
|
||
|
\begin{cases}
|
||
|
\text{location parameter} \mu \\
|
||
|
\text{scale parameter} \sigma
|
||
|
\end{cases}
|
||
|
$$
|
||
|
\end{center}
|
||
|
:::
|
||
|
::::
|
||
|
\vspace{20pt}
|
||
|
$$
|
||
|
x \rightarrow \frac{x - \mu}{\sigma}
|
||
|
$$
|
||
|
|
||
|
|
||
|
## Moyal CDF
|
||
|
|
||
|
The cumulative distribution function $\mathscr{M}(x)$ can be derived from the
|
||
|
pdf $M(x)$ integrating:
|
||
|
$$
|
||
|
\mathscr{M}(x) = \frac{1}{\sqrt{2 \pi}} \int\limits_{- \infty}^x dy \, M(y)
|
||
|
= \frac{1}{\sqrt{2 \pi}} \int\limits_{- \infty}^x dy \, e^{- \frac{1}{2}}
|
||
|
e^{- \frac{1}{2} e^{-y}}
|
||
|
$$
|
||
|
with the change of variable:
|
||
|
\begin{align}
|
||
|
z = \frac{1}{\sqrt{2}} e^{-\frac{y}{2}}
|
||
|
&\thus \frac{dz}{dy} = \frac{-1}{2 \sqrt{2}} e^{-\frac{y}{2}} \\
|
||
|
&\thus dy = -2 \sqrt{2} e^{\frac{y}{2}} dz
|
||
|
\end{align}
|
||
|
hence, the limits of the integral become:
|
||
|
\begin{align}
|
||
|
y \rightarrow - \infty &\thus z \rightarrow + \infty \\
|
||
|
y = x &\thus z = \frac{1}{\sqrt{2}} e^{-\frac{x}{2}} = f(x)
|
||
|
\end{align}
|
||
|
and the CDF can be rewritten as:
|
||
|
$$
|
||
|
\mathscr{M}(x) = \frac{1}{2 \pi} \int\limits_{+ \infty}^{f(x)}
|
||
|
dz \, (- 2 \sqrt{2}) e^{\frac{y}{2}} e^{- \frac{y}{2}} e^{- z^2}
|
||
|
= \frac{-2 \sqrt{2}}{\sqrt{2 \pi}} \int\limits_{+ \infty}^{f(x)}
|
||
|
dz e^{- z^2}
|
||
|
$$
|
||
|
since the `erf` is defines as:
|
||
|
$$
|
||
|
\text{erf} = \frac{2}{\sqrt{\pi}} \int_0^x dy \, e^{-y^2}
|
||
|
$$
|
||
|
$$
|
||
|
1 = \frac{2}{\sqrt{\pi}} \int_0^{+ \infty} dy \, e^{-y^2}
|
||
|
= \frac{2}{\sqrt{\pi}} \int_0^x dy \, e^{-y^2} +
|
||
|
\frac{2}{\sqrt{\pi}} \int_x^{+ \infty} dy \, e^{-y^2}
|
||
|
= \text{erf}(x) + \frac{2}{\sqrt{\pi}} \int_x^{+ \infty} dy \, e^{-y^2}
|
||
|
$$
|
||
|
thus:
|
||
|
$$
|
||
|
\frac{2}{\sqrt{\pi}} \int_x^{+ \infty} dy \, e^{-y^2}
|
||
|
1 = \frac{2}{\sqrt{\pi}} \int_0^x dy \, e^{-y^2} +
|
||
|
$$
|
||
|
|
||
|
|
||
|
## Moyal mode
|
||
|
|
||
|
Peak of the PDF
|
||
|
$$
|
||
|
\partial_x M(x) = \partial_x \left( \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}
|
||
|
\left( x + e^{-x} \right)} \right)
|
||
|
= \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}
|
||
|
\left( x + e^{-x} \right)} \left( -\frac{1}{2} \right)
|
||
|
\left( 1 - e^{-x} \right)
|
||
|
$$
|
||
|
\vspace{15pt}
|
||
|
$$
|
||
|
\partial_x M(x) = 0 \thus x = 0 \thus x = \mu
|
||
|
$$
|
||
|
\vspace{15pt}
|
||
|
$$
|
||
|
\thus \mu = m_L
|
||
|
$$
|