analistica/slides/sections/2.md

58 lines
778 B
Markdown
Raw Normal View History

# Landau PDF
2020-06-05 16:36:19 +02:00
2020-06-07 00:02:20 +02:00
## A pathological distribution
2020-06-05 16:36:19 +02:00
Because of its fat tail:
2020-06-05 16:36:19 +02:00
2020-06-06 02:53:49 +02:00
\begin{align*}
E[x] &\longrightarrow + \infty \\
V[x] &\longrightarrow + \infty
2020-06-06 02:53:49 +02:00
\end{align*}
2020-06-05 16:36:19 +02:00
2020-06-07 00:02:20 +02:00
. . .
No closed form for parameters.
2020-06-07 00:02:20 +02:00
## Landau median
The median of a PDF is defined as:
$$
2020-06-07 00:02:20 +02:00
Q_L(m) = \frac{1}{2}
$$
2020-06-06 02:53:49 +02:00
2020-06-07 00:02:20 +02:00
. . .
- CDF computed by numerical integration,
- QDF computed by numerical root-finding (Brent)
2020-06-06 02:53:49 +02:00
$$
m_L = 1.3557804...
2020-06-05 16:36:19 +02:00
$$
2020-06-06 02:53:49 +02:00
2020-06-07 00:02:20 +02:00
## Landau mode
- Maxmimum $\quad \Longrightarrow \quad \partial_x M(\mu) = 0$,
- Computed by numerical minimization (Brent)
$$
\mu_L = 0.22278...
$$
## Landau FWHM
$$
\text{FWHM} = x_+ - x_- \with L(x_{\pm})
= \frac{L_{\text{max}}}{2} = \frac{L(\mu_L)}{2}
$$
- Computed numerically (Brent)
$$
\text{FWHM}_L = 4.018645...
$$