analistica/slides/sections/2.md

68 lines
881 B
Markdown
Raw Normal View History

# Landau PDF
2020-06-05 16:36:19 +02:00
2020-06-07 00:02:20 +02:00
## A pathological distribution
2020-06-05 16:36:19 +02:00
Because of its fat tail:
2020-06-05 16:36:19 +02:00
2020-06-06 02:53:49 +02:00
\begin{align*}
E[x] &\longrightarrow + \infty \\
V[x] &\longrightarrow + \infty
2020-06-06 02:53:49 +02:00
\end{align*}
2020-06-05 16:36:19 +02:00
2020-06-07 00:02:20 +02:00
. . .
No closed form for parameters $\thus$ numerical estimations
2020-06-07 00:02:20 +02:00
## Landau median
The median of a PDF is defined as:
$$
2020-06-07 14:32:03 +02:00
m = Q \left( \frac{1}{2} \right)
$$
2020-06-06 02:53:49 +02:00
2020-06-07 00:02:20 +02:00
. . .
2020-06-07 14:32:03 +02:00
- CDF computed by numerical integration
- QDF computed by numerical root-finding (Brent)
2020-06-06 02:53:49 +02:00
$$
2020-06-07 14:32:03 +02:00
m_L\ex = 1.3557804...
2020-06-05 16:36:19 +02:00
$$
2020-06-06 02:53:49 +02:00
2020-06-07 00:02:20 +02:00
## Landau mode
- Maximum $\quad \Longrightarrow \quad \partial_x L(\mu) = 0$
2020-06-07 14:32:03 +02:00
. . .
2020-06-07 00:02:20 +02:00
- Computed by numerical minimization (Brent)
$$
2020-06-07 14:32:03 +02:00
\mu_L\ex = 0.22278...
2020-06-07 00:02:20 +02:00
$$
## Landau FWHM
2020-06-07 14:32:03 +02:00
We need to compute the maximum:
2020-06-07 00:02:20 +02:00
$$
2020-06-07 14:32:03 +02:00
L_{\text{max}} = L(\mu_L)
2020-06-07 00:02:20 +02:00
$$
2020-06-07 14:32:03 +02:00
$$
\text{FWHM} = w = x_+ - x_- \with L(x_{\pm}) = \frac{L_{\text{max}}}{2}
$$
. . .
- Computed by numerical root finding (Brent)
2020-06-07 00:02:20 +02:00
$$
2020-06-07 14:32:03 +02:00
w_L\ex = 4.018645...
2020-06-07 00:02:20 +02:00
$$