2020-06-06 19:40:48 +02:00
|
|
|
|
# Landau PDF
|
2020-06-05 16:36:19 +02:00
|
|
|
|
|
|
|
|
|
|
2020-06-07 00:02:20 +02:00
|
|
|
|
## A pathological distribution
|
2020-06-05 16:36:19 +02:00
|
|
|
|
|
2020-06-06 19:40:48 +02:00
|
|
|
|
Because of its fat tail:
|
2020-06-05 16:36:19 +02:00
|
|
|
|
|
2020-06-06 02:53:49 +02:00
|
|
|
|
\begin{align*}
|
2020-06-06 19:40:48 +02:00
|
|
|
|
E[x] &\longrightarrow + \infty \\
|
|
|
|
|
V[x] &\longrightarrow + \infty
|
2020-06-06 02:53:49 +02:00
|
|
|
|
\end{align*}
|
2020-06-05 16:36:19 +02:00
|
|
|
|
|
2020-06-07 00:02:20 +02:00
|
|
|
|
. . .
|
|
|
|
|
|
2020-06-08 23:45:13 +02:00
|
|
|
|
No closed form for parameters $\thus$ numerical estimations
|
2020-06-05 23:27:21 +02:00
|
|
|
|
|
2020-06-07 00:02:20 +02:00
|
|
|
|
|
2020-06-06 19:40:48 +02:00
|
|
|
|
## Landau median
|
2020-06-05 23:27:21 +02:00
|
|
|
|
|
2020-06-06 19:40:48 +02:00
|
|
|
|
The median of a PDF is defined as:
|
2020-06-05 23:27:21 +02:00
|
|
|
|
|
|
|
|
|
$$
|
2020-06-07 14:32:03 +02:00
|
|
|
|
m = Q \left( \frac{1}{2} \right)
|
2020-06-05 23:27:21 +02:00
|
|
|
|
$$
|
2020-06-06 02:53:49 +02:00
|
|
|
|
|
2020-06-07 00:02:20 +02:00
|
|
|
|
. . .
|
|
|
|
|
|
2020-06-07 14:32:03 +02:00
|
|
|
|
- CDF computed by numerical integration
|
2020-06-06 19:40:48 +02:00
|
|
|
|
- QDF computed by numerical root-finding (Brent)
|
2020-06-06 02:53:49 +02:00
|
|
|
|
|
2020-06-05 23:27:21 +02:00
|
|
|
|
$$
|
2020-06-07 14:32:03 +02:00
|
|
|
|
m_L\ex = 1.3557804...
|
2020-06-05 16:36:19 +02:00
|
|
|
|
$$
|
2020-06-06 02:53:49 +02:00
|
|
|
|
|
2020-06-07 00:02:20 +02:00
|
|
|
|
|
|
|
|
|
## Landau mode
|
|
|
|
|
|
2020-06-09 18:28:53 +02:00
|
|
|
|
- Maximum $\hence \partial_x L(\mu) = 0$
|
2020-06-07 14:32:03 +02:00
|
|
|
|
|
|
|
|
|
. . .
|
|
|
|
|
|
2020-06-07 00:02:20 +02:00
|
|
|
|
- Computed by numerical minimization (Brent)
|
|
|
|
|
|
|
|
|
|
$$
|
2020-06-07 14:32:03 +02:00
|
|
|
|
\mu_L\ex = − 0.22278...
|
2020-06-07 00:02:20 +02:00
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## Landau FWHM
|
|
|
|
|
|
2020-06-07 14:32:03 +02:00
|
|
|
|
We need to compute the maximum:
|
|
|
|
|
|
2020-06-07 00:02:20 +02:00
|
|
|
|
$$
|
2020-06-07 14:32:03 +02:00
|
|
|
|
L_{\text{max}} = L(\mu_L)
|
2020-06-07 00:02:20 +02:00
|
|
|
|
$$
|
|
|
|
|
|
2020-06-07 14:32:03 +02:00
|
|
|
|
$$
|
|
|
|
|
\text{FWHM} = w = x_+ - x_- \with L(x_{\pm}) = \frac{L_{\text{max}}}{2}
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
. . .
|
|
|
|
|
|
|
|
|
|
- Computed by numerical root finding (Brent)
|
2020-06-07 00:02:20 +02:00
|
|
|
|
|
|
|
|
|
$$
|
2020-06-07 14:32:03 +02:00
|
|
|
|
w_L\ex = 4.018645...
|
2020-06-07 00:02:20 +02:00
|
|
|
|
$$
|