analistica/slides/sections/1.md

94 lines
1.5 KiB
Markdown
Raw Normal View History

# Goal
2020-06-05 16:36:19 +02:00
## Goal
2020-06-06 02:52:49 +02:00
2020-06-07 14:32:03 +02:00
- Generate a sample $L$ of points from a Landau PDF
- Generate a sample $M$ of points from a Moyal PDF
2020-06-05 16:36:19 +02:00
2020-06-07 14:32:03 +02:00
. . .
2020-06-05 16:36:19 +02:00
2020-06-07 14:32:03 +02:00
- Implement a bunch of statistical tests
2020-06-05 16:36:19 +02:00
2020-06-07 14:32:03 +02:00
. . .
- Check if they work:
- the sample $L$ truly comes from a Landau PDF
- the sample $M$ does not come from a Landau PDF
2020-06-05 16:36:19 +02:00
2020-06-06 02:53:49 +02:00
## Why?
2020-06-05 16:36:19 +02:00
2020-06-07 14:32:03 +02:00
The Landau and Moyal PDFs are really similar. Historically, the latter was
utilized in the approximation of the former.
2020-06-05 16:36:19 +02:00
:::: {.columns}
::: {.column width=33%}
![](images/moyal-photo.jpg){height=130pt}
:::
2020-06-06 02:53:49 +02:00
::: {.column width=33%}
![](images/mondau-photo.jpg){height=130pt}
:::
2020-06-06 02:53:49 +02:00
::: {.column width=33%}
![](images/landau-photo.jpg){height=130pt}
:::
::::
2020-06-05 16:36:19 +02:00
2020-06-06 02:53:49 +02:00
## Two similar distributions
2020-06-05 16:36:19 +02:00
2020-06-06 02:53:49 +02:00
:::: {.columns}
::: {.column width=50%}
2020-06-05 16:36:19 +02:00
Landau PDF
$$
L(x) = \frac{1}{\pi} \int \limits_{0}^{+ \infty}
dt \, e^{-t \ln(t) -xt} \sin (\pi t)
$$
:::
2020-06-06 02:53:49 +02:00
::: {.column width=50%}
2020-06-05 16:36:19 +02:00
Moyal PDF
$$
M(x) = \frac{1}{\sqrt{2 \pi}} \exp \left[ - \frac{1}{2}
\left( x + e^{- x} \right) \right]
2020-06-05 16:36:19 +02:00
$$
:::
::::
2020-06-07 14:32:03 +02:00
\vspace{10pt}
2020-06-06 02:53:49 +02:00
:::: {.columns}
::: {.column width=50%}
2020-06-05 16:36:19 +02:00
![](images/landau-pdf.pdf)
:::
2020-06-06 02:53:49 +02:00
::: {.column width=50%}
2020-06-05 16:36:19 +02:00
![](images/moyal-pdf.pdf)
:::
::::
2020-06-07 14:32:03 +02:00
2020-06-05 16:36:19 +02:00
## Two similar distributions
![](images/both-pdf.pdf)
2020-06-07 14:32:03 +02:00
## Statistical tests
. . .
- Parameters comparison:
- compatibility between expected and observed PDF parameters
. . .
- Kolmogorov - Smirnov:
- compatibility between expected and observed CDF
. . .
- Trapani test:
- compatibiity between expected and observed mean