analistica/slides/sections/1.md

91 lines
1.4 KiB
Markdown
Raw Normal View History

2020-06-04 12:34:17 +02:00
---
title: Randomness tests of a non-uniform distribution
date: \today
author:
- Giulia Marcer
- Michele Guerini Rocco
institute:
- Università di Milano-Bicocca
theme: metropolis
aspectratio: 169
fontsize: 14pt
mathfont: FiraMath-Regular
sansfont: Fira Sans
2020-06-04 23:19:00 +02:00
header-includes: |
```{=latex}
2020-06-05 16:36:19 +02:00
% Misc
2020-06-04 23:19:00 +02:00
% "thus" in formulas
\DeclareMathOperator{\thus}{%
\hspace{30pt} \Longrightarrow \hspace{30pt}
}
% "et" in formulas
\DeclareMathOperator{\et}{%
\hspace{30pt} \wedge \hspace{30pt}
}
2020-06-05 16:36:19 +02:00
2020-06-04 23:19:00 +02:00
```
2020-06-04 12:34:17 +02:00
...
2020-06-05 16:36:19 +02:00
# Goal
2020-06-05 16:36:19 +02:00
## Goal
What?
- Generate a sample of points from a Moyal PDF
- Prove it truly comes from it and not from a Landau PDF
How?
- Applying some hypothesis testings
Why?
- They are really similar. Historically, the Moyal distribution was utilized in
the approximation of the Landau Distribution.
# Two similar distributions
:::: {.columns .c}
::: {.column width=50%}
\begin{center}
Landau PDF
$$
L(x) = \frac{1}{\pi} \int \limits_{0}^{+ \infty}
dt \, e^{-t \ln(t) -xt} \sin (\pi t)
$$
\end{center}
:::
::: {.column width=50%}
\begin{center}
Moyal PDF
$$
M(x) = \frac{1}{\sqrt{2 \pi \sigma}} \exp \left( - \frac{x - \mu }{2 \sigma}
- \frac{1}{2} e^{- \frac{x -\mu}{\sigma}} \right)
$$
\end{center}
:::
::::
:::: {.columns .c}
::: {.column width=50%}
![](images/landau-pdf.pdf)
:::
::: {.column width=50%}
![](images/moyal-pdf.pdf)
:::
::::
## Two similar distributions
grafici sovrapposti