analistica/slides/sections/1.md

129 lines
2.3 KiB
Markdown
Raw Normal View History

2020-06-06 02:52:49 +02:00
---
title: Randomness tests of a non-uniform distribution
date: \today
author:
- Giulia Marcer
- Michele Guerini Rocco
institute:
- Università di Milano-Bicocca
theme: metropolis
themeoptions:
- titleformat=allcaps
aspectratio: 169
fontsize: 12pt
mainfont: Fira Sans
mainfontoptions:
- BoldFont=Fira Sans
mathfont: FiraMath-Regular
header-includes: |
```{=latex}
%% Colors
\definecolor{mDarkTeal} {HTML}{020202}
\definecolor{mLightBrown}{HTML}{C49D4A}
\definecolor{mDarkRed} {HTML}{92182B}
\definecolor{green} {HTML}{60AC39}
\definecolor{red} {HTML}{D73737}
\definecolor{blue} {HTML}{6684E1}
\definecolor{yellow}{HTML}{CFB017}
\setbeamercolor{frametitle}{bg=mDarkRed}
% center images
\LetLtxMacro{\oldIncludegraphics}{\includegraphics}
\renewcommand{\includegraphics}[2][]{
\centering
\oldIncludegraphics[#1]{#2}
}
%% customer macros
\DeclareMathOperator{\with}{%
\hspace{30pt} \text{with} \hspace{30pt}
}
% "thus" in formulas
\DeclareMathOperator{\thus}{%
\hspace{30pt} \Longrightarrow \hspace{30pt}
}
% "et" in formulas
\DeclareMathOperator{\et}{%
\hspace{30pt} \wedge \hspace{30pt}
}
```
...
2020-06-04 12:34:17 +02:00
2020-06-05 16:36:19 +02:00
# Goal
2020-06-05 16:36:19 +02:00
## Goal
2020-06-06 02:52:49 +02:00
2020-06-05 16:36:19 +02:00
What?
- Generate a sample of points from a Moyal PDF
- Prove it truly comes from it and not from a Landau PDF
How?
- Applying some hypothesis testings
## Why?
2020-06-05 16:36:19 +02:00
The Landau and Moyal PDFs are really similar. Historically, the latter distribution was utilized in
the approximation of the Landau Distribution.
2020-06-05 16:36:19 +02:00
:::: {.columns}
::: {.column width=33%}
\centering
![](images/moyal-photo.jpg){height=130pt}
:::
::: {.column width=33%}
\centering
![](images/mondau-photo.jpg){height=130pt}
:::
::: {.column width=33%}
\centering
![](images/landau-photo.jpg){height=130pt}
:::
::::
2020-06-05 16:36:19 +02:00
## Two similar distributions
2020-06-05 16:36:19 +02:00
:::: {.columns .c}
::: {.column width=50%}
2020-06-05 16:36:19 +02:00
\begin{center}
Landau PDF
$$
L(x) = \frac{1}{\pi} \int \limits_{0}^{+ \infty}
dt \, e^{-t \ln(t) -xt} \sin (\pi t)
$$
:::
::: {.column width=50%}
2020-06-05 16:36:19 +02:00
\begin{center}
Moyal PDF
$$
M(x) = \frac{1}{\sqrt{2 \pi}} \exp \left[ - \frac{1}{2}
\left( x + e^{- x} \right) \right]
2020-06-05 16:36:19 +02:00
$$
:::
::::
:::: {.columns .c}
::: {.column width=50%}
2020-06-05 16:36:19 +02:00
![](images/landau-pdf.pdf)
:::
::: {.column width=50%}
2020-06-05 16:36:19 +02:00
![](images/moyal-pdf.pdf)
:::
::::
## Two similar distributions
\centering
![](images/both-pdf.pdf)