analistica/slides/sections/1.md

69 lines
1.1 KiB
Markdown
Raw Normal View History

# Goal
2020-06-05 16:36:19 +02:00
## Goal
2020-06-06 02:52:49 +02:00
2020-06-05 16:36:19 +02:00
What?
- Generate a sample of points from a Moyal PDF
- Prove it truly comes from it and not from a Landau PDF
How?
- Applying some hypothesis testings
2020-06-06 02:53:49 +02:00
## Why?
2020-06-05 16:36:19 +02:00
The Landau and Moyal PDFs are really similar. Historically, the latter distribution was utilized in
the approximation of the Landau Distribution.
2020-06-05 16:36:19 +02:00
:::: {.columns}
::: {.column width=33%}
![](images/moyal-photo.jpg){height=130pt}
:::
2020-06-06 02:53:49 +02:00
::: {.column width=33%}
![](images/mondau-photo.jpg){height=130pt}
:::
2020-06-06 02:53:49 +02:00
::: {.column width=33%}
![](images/landau-photo.jpg){height=130pt}
:::
::::
2020-06-05 16:36:19 +02:00
2020-06-06 02:53:49 +02:00
## Two similar distributions
2020-06-05 16:36:19 +02:00
2020-06-06 02:53:49 +02:00
:::: {.columns}
::: {.column width=50%}
2020-06-05 16:36:19 +02:00
Landau PDF
$$
L(x) = \frac{1}{\pi} \int \limits_{0}^{+ \infty}
dt \, e^{-t \ln(t) -xt} \sin (\pi t)
$$
:::
2020-06-06 02:53:49 +02:00
::: {.column width=50%}
2020-06-05 16:36:19 +02:00
Moyal PDF
$$
M(x) = \frac{1}{\sqrt{2 \pi}} \exp \left[ - \frac{1}{2}
\left( x + e^{- x} \right) \right]
2020-06-05 16:36:19 +02:00
$$
:::
::::
2020-06-06 02:53:49 +02:00
:::: {.columns}
::: {.column width=50%}
2020-06-05 16:36:19 +02:00
![](images/landau-pdf.pdf)
:::
2020-06-06 02:53:49 +02:00
::: {.column width=50%}
2020-06-05 16:36:19 +02:00
![](images/moyal-pdf.pdf)
:::
::::
## Two similar distributions
![](images/both-pdf.pdf)