2020-06-06 19:40:48 +02:00
|
|
|
# Landau PDF
|
2020-06-05 16:36:19 +02:00
|
|
|
|
|
|
|
|
2020-06-06 19:40:48 +02:00
|
|
|
## Pathological probability distribution
|
2020-06-05 16:36:19 +02:00
|
|
|
|
2020-06-06 19:40:48 +02:00
|
|
|
Because of its fat tail:
|
2020-06-05 16:36:19 +02:00
|
|
|
|
2020-06-06 02:53:49 +02:00
|
|
|
\begin{align*}
|
2020-06-06 19:40:48 +02:00
|
|
|
E[x] &\longrightarrow + \infty \\
|
|
|
|
V[x] &\longrightarrow + \infty
|
2020-06-06 02:53:49 +02:00
|
|
|
\end{align*}
|
2020-06-05 16:36:19 +02:00
|
|
|
|
2020-06-06 19:40:48 +02:00
|
|
|
No closed form for parameters.
|
2020-06-05 23:27:21 +02:00
|
|
|
|
2020-06-06 19:40:48 +02:00
|
|
|
## Landau median
|
2020-06-05 23:27:21 +02:00
|
|
|
|
2020-06-06 19:40:48 +02:00
|
|
|
The median of a PDF is defined as:
|
2020-06-05 23:27:21 +02:00
|
|
|
|
|
|
|
$$
|
2020-06-06 19:40:48 +02:00
|
|
|
Q_L(x) = \frac{1}{2}
|
2020-06-05 23:27:21 +02:00
|
|
|
$$
|
2020-06-06 02:53:49 +02:00
|
|
|
|
2020-06-06 19:40:48 +02:00
|
|
|
- CDF computed by numerical integration,
|
|
|
|
- QDF computed by numerical root-finding (Brent)
|
2020-06-06 02:53:49 +02:00
|
|
|
|
2020-06-06 19:40:48 +02:00
|
|
|
hence:
|
2020-06-05 23:27:21 +02:00
|
|
|
|
|
|
|
$$
|
2020-06-06 19:40:48 +02:00
|
|
|
m_L = 1.3557804...
|
2020-06-05 16:36:19 +02:00
|
|
|
$$
|
2020-06-06 02:53:49 +02:00
|
|
|
|
2020-06-06 19:40:48 +02:00
|
|
|
o
|