analistica/slides/sections/1.md

69 lines
1.1 KiB
Markdown

# Goal
## Goal
What?
- Generate a sample of points from a Moyal PDF
- Prove it truly comes from it and not from a Landau PDF
How?
- Applying some hypothesis testings
## Why?
The Landau and Moyal PDFs are really similar. Historically, the latter distribution was utilized in
the approximation of the Landau Distribution.
:::: {.columns}
::: {.column width=33%}
![](images/moyal-photo.jpg){height=130pt}
:::
::: {.column width=33%}
![](images/mondau-photo.jpg){height=130pt}
:::
::: {.column width=33%}
![](images/landau-photo.jpg){height=130pt}
:::
::::
## Two similar distributions
:::: {.columns}
::: {.column width=50%}
Landau PDF
$$
L(x) = \frac{1}{\pi} \int \limits_{0}^{+ \infty}
dt \, e^{-t \ln(t) -xt} \sin (\pi t)
$$
:::
::: {.column width=50%}
Moyal PDF
$$
M(x) = \frac{1}{\sqrt{2 \pi}} \exp \left[ - \frac{1}{2}
\left( x + e^{- x} \right) \right]
$$
:::
::::
:::: {.columns}
::: {.column width=50%}
![](images/landau-pdf.pdf)
:::
::: {.column width=50%}
![](images/moyal-pdf.pdf)
:::
::::
## Two similar distributions
![](images/both-pdf.pdf)