91 lines
1.4 KiB
Markdown
91 lines
1.4 KiB
Markdown
---
|
|
title: Randomness tests of a non-uniform distribution
|
|
date: \today
|
|
author:
|
|
- Giulia Marcer
|
|
- Michele Guerini Rocco
|
|
institute:
|
|
- Università di Milano-Bicocca
|
|
|
|
theme: metropolis
|
|
aspectratio: 169
|
|
|
|
fontsize: 14pt
|
|
mathfont: FiraMath-Regular
|
|
sansfont: Fira Sans
|
|
|
|
header-includes: |
|
|
```{=latex}
|
|
|
|
% Misc
|
|
% "thus" in formulas
|
|
\DeclareMathOperator{\thus}{%
|
|
\hspace{30pt} \Longrightarrow \hspace{30pt}
|
|
}
|
|
|
|
% "et" in formulas
|
|
\DeclareMathOperator{\et}{%
|
|
\hspace{30pt} \wedge \hspace{30pt}
|
|
}
|
|
|
|
```
|
|
...
|
|
|
|
|
|
# Goal
|
|
|
|
|
|
## Goal
|
|
|
|
What?
|
|
|
|
- Generate a sample of points from a Moyal PDF
|
|
- Prove it truly comes from it and not from a Landau PDF
|
|
|
|
How?
|
|
|
|
- Applying some hypothesis testings
|
|
|
|
Why?
|
|
|
|
- They are really similar. Historically, the Moyal distribution was utilized in
|
|
the approximation of the Landau Distribution.
|
|
|
|
|
|
# Two similar distributions
|
|
|
|
:::: {.columns .c}
|
|
::: {.column width=50%}
|
|
\begin{center}
|
|
Landau PDF
|
|
$$
|
|
L(x) = \frac{1}{\pi} \int \limits_{0}^{+ \infty}
|
|
dt \, e^{-t \ln(t) -xt} \sin (\pi t)
|
|
$$
|
|
\end{center}
|
|
:::
|
|
::: {.column width=50%}
|
|
\begin{center}
|
|
Moyal PDF
|
|
$$
|
|
M(x) = \frac{1}{\sqrt{2 \pi \sigma}} \exp \left( - \frac{x - \mu }{2 \sigma}
|
|
- \frac{1}{2} e^{- \frac{x -\mu}{\sigma}} \right)
|
|
$$
|
|
\end{center}
|
|
:::
|
|
::::
|
|
|
|
:::: {.columns .c}
|
|
::: {.column width=50%}
|
|
![](images/landau-pdf.pdf)
|
|
:::
|
|
::: {.column width=50%}
|
|
![](images/moyal-pdf.pdf)
|
|
:::
|
|
::::
|
|
|
|
## Two similar distributions
|
|
|
|
grafici sovrapposti
|
|
|