--- title: Randomness tests of a non-uniform distribution date: \today author: - Giulia Marcer - Michele Guerini Rocco institute: - Università di Milano-Bicocca theme: metropolis aspectratio: 169 fontsize: 14pt mathfont: FiraMath-Regular sansfont: Fira Sans header-includes: | ```{=latex} % Misc % "thus" in formulas \DeclareMathOperator{\thus}{% \hspace{30pt} \Longrightarrow \hspace{30pt} } % "et" in formulas \DeclareMathOperator{\et}{% \hspace{30pt} \wedge \hspace{30pt} } ``` ... # Goal ## Goal What? - Generate a sample of points from a Moyal PDF - Prove it truly comes from it and not from a Landau PDF How? - Applying some hypothesis testings Why? - They are really similar. Historically, the Moyal distribution was utilized in the approximation of the Landau Distribution. # Two similar distributions :::: {.columns .c} ::: {.column width=50%} \begin{center} Landau PDF $$ L(x) = \frac{1}{\pi} \int \limits_{0}^{+ \infty} dt \, e^{-t \ln(t) -xt} \sin (\pi t) $$ \end{center} ::: ::: {.column width=50%} \begin{center} Moyal PDF $$ M(x) = \frac{1}{\sqrt{2 \pi \sigma}} \exp \left( - \frac{x - \mu }{2 \sigma} - \frac{1}{2} e^{- \frac{x -\mu}{\sigma}} \right) $$ \end{center} ::: :::: :::: {.columns .c} ::: {.column width=50%} ![](images/landau-pdf.pdf) ::: ::: {.column width=50%} ![](images/moyal-pdf.pdf) ::: :::: ## Two similar distributions grafici sovrapposti