analistica/slides/sections/6.md

149 lines
1.7 KiB
Markdown

# Landau sample
## Sample
Sample N = 50'000 random points following $L(x)$
$$
L(x) = \frac{1}{\pi} \int \limits_{0}^{+ \infty}
dt \, e^{-t \ln(t) -xt} \sin (\pi t)
$$
. . .
gsl_ran_Landau(gsl_rng)
## Compatiblity results:
Median:
:::: {.columns}
::: {.column width=50%}
- $t = 0.761$
- $p = 0.446$
:::
::: {.column width=50%}
$$
\thus \text{Compatible!}
$$
:::
::::
\vspace{10pt}
. . .
Mode:
:::: {.columns}
::: {.column width=50%}
- $t = 1.012$
- $p = 0.311$
:::
::: {.column width=50%}
$$
\thus \text{Compatible!}
$$
:::
::::
\vspace{10pt}
. . .
FWHM:
:::: {.columns}
::: {.column width=50%}
- $t=1.338$
- $p=0.181$
:::
::: {.column width=50%}
$$
\thus \text{Compatible!}
$$
:::
::::
# Moyal sample
## Sample
Sample N = 50'000 random points following $M_{\mu \sigma}(x)$
$$
M_{\mu \sigma}(x) = \frac{1}{\sqrt{2 \pi} \sigma} \exp
\left[ - \frac{1}{2} \left(
\frac{x - \mu}{\sigma}
+ e^{-\frac{x - \mu}{\sigma}} \right) \right]
$$
. . .
reverse sampling
- sampling $y$ uniformly in [0, 1] $\quad \longrightarrow \quad x = Q_M(y)$
## Compatiblity results:
Median:
:::: {.columns}
::: {.column width=50%}
- $t = 669.940$
- $p = 0.000$
:::
::: {.column width=50%}
$$
\thus \text{Not compatible!}
$$
:::
::::
\vspace{10pt}
. . .
Mode:
:::: {.columns}
::: {.column width=50%}
- $t = 0.732$
- $p = 0.464$
:::
::: {.column width=50%}
$$
\thus \text{Compatible!}
$$
:::
::::
\vspace{10pt}
. . .
FWHM:
:::: {.columns}
::: {.column width=50%}
- $t = 1.329$
- $p = 0.184$
:::
::: {.column width=50%}
$$
\thus \text{Compatible!}
$$
:::
::::