# Landau sample ## Sample Sample N = 50'000 random points following $L(x)$ $$ L(x) = \frac{1}{\pi} \int \limits_{0}^{+ \infty} dt \, e^{-t \ln(t) -xt} \sin (\pi t) $$ . . . gsl_ran_Landau(gsl_rng) ## Compatiblity results: Median: :::: {.columns} ::: {.column width=50%} - $t = 0.761$ - $p = 0.446$ ::: ::: {.column width=50%} $$ \thus \text{Compatible!} $$ ::: :::: \vspace{10pt} . . . Mode: :::: {.columns} ::: {.column width=50%} - $t = 1.012$ - $p = 0.311$ ::: ::: {.column width=50%} $$ \thus \text{Compatible!} $$ ::: :::: \vspace{10pt} . . . FWHM: :::: {.columns} ::: {.column width=50%} - $t=1.338$ - $p=0.181$ ::: ::: {.column width=50%} $$ \thus \text{Compatible!} $$ ::: :::: # Moyal sample ## Sample Sample N = 50'000 random points following $M_{\mu \sigma}(x)$ $$ M_{\mu \sigma}(x) = \frac{1}{\sqrt{2 \pi} \sigma} \exp \left[ - \frac{1}{2} \left( \frac{x - \mu}{\sigma} + e^{-\frac{x - \mu}{\sigma}} \right) \right] $$ . . . reverse sampling - sampling $y$ uniformly in [0, 1] $\quad \longrightarrow \quad x = Q_M(y)$ ## Compatiblity results: Median: :::: {.columns} ::: {.column width=50%} - $t = 669.940$ - $p = 0.000$ ::: ::: {.column width=50%} $$ \thus \text{Not compatible!} $$ ::: :::: \vspace{10pt} . . . Mode: :::: {.columns} ::: {.column width=50%} - $t = 0.732$ - $p = 0.464$ ::: ::: {.column width=50%} $$ \thus \text{Compatible!} $$ ::: :::: \vspace{10pt} . . . FWHM: :::: {.columns} ::: {.column width=50%} - $t = 1.329$ - $p = 0.184$ ::: ::: {.column width=50%} $$ \thus \text{Compatible!} $$ ::: ::::