analistica/slides/sections/6.md

1.7 KiB

Landau sample

Sample

Sample N = 50'000 random points following L(x)


  L(x) = \frac{1}{\pi} \int \limits_{0}^{+ \infty}
         dt \, e^{-t \ln(t) -xt} \sin (\pi t)

. . .

gsl_ran_Landau(gsl_rng)

Compatiblity results:

Median:

:::: {.columns} ::: {.column width=50%}

  • t = 0.761
  • $p = 0.446$ :::

::: {.column width=50%}

$$
\thus \text{Compatible!}

::: ::::

\vspace{10pt}

. . .

Mode:

:::: {.columns} ::: {.column width=50%}

  • t = 1.012
  • $p = 0.311$ :::

::: {.column width=50%}

$$
\thus \text{Compatible!}

::: ::::

\vspace{10pt}

. . .

FWHM:

:::: {.columns} ::: {.column width=50%}

  • t=1.338
  • $p=0.181$ :::

::: {.column width=50%}

$$
\thus \text{Compatible!}

::: ::::

Moyal sample

Sample

Sample N = 50'000 random points following M_{\mu \sigma}(x)


  M_{\mu \sigma}(x) = \frac{1}{\sqrt{2 \pi} \sigma} \exp
         \left[ - \frac{1}{2} \left(
           \frac{x - \mu}{\sigma}
           + e^{-\frac{x - \mu}{\sigma}} \right) \right]

. . .

reverse sampling

  • sampling y uniformly in [0, 1] \quad \longrightarrow \quad x = Q_M(y)

Compatiblity results:

Median:

:::: {.columns} ::: {.column width=50%}

  • t = 669.940
  • $p = 0.000$ :::

::: {.column width=50%}

$$
\thus \text{Not compatible!}

::: ::::

\vspace{10pt}

. . .

Mode:

:::: {.columns} ::: {.column width=50%}

  • t = 0.732
  • $p = 0.464$ :::

::: {.column width=50%}

$$
\thus \text{Compatible!}

::: ::::

\vspace{10pt}

. . .

FWHM:

:::: {.columns} ::: {.column width=50%}

  • t = 1.329
  • $p = 0.184$ :::

::: {.column width=50%}

$$
\thus \text{Compatible!}

::: ::::