analistica/slides/sections/3.md

158 lines
3.3 KiB
Markdown
Raw Normal View History

# Moyal distribution
## Moyal PDF {.b}
2020-06-06 02:53:49 +02:00
:::: {.columns align=center}
::: {.column width=50%}
Standard form:
$$
M(z) = \frac{1}{\sqrt{2 \pi}} \exp
\left[ - \frac{1}{2} \left( z + e^{-z} \right) \right]
$$
. . .
More generally:
- location parameter $\mu$
- scale parameter $\sigma$
$$
M_{\mu \sigma}(x) = \frac{1}{\sqrt{2 \pi} \sigma} \exp
\left[ - \frac{1}{2} \left(
\frac{x - \mu}{\sigma}
+ e^{-\frac{x - \mu}{\sigma}} \right) \right]
$$
:::
::: {.column width=50%}
![](images/moyal-pdf.pdf)
:::
::::
## Moyal CDF
The CDF $F_M(x)$ can be derived by direct integration:
$$
F_M(x) = \int\limits_{- \infty}^x dy \, M(y)
= \frac{1}{\sqrt{2 \pi}} \int\limits_{- \infty}^x dy \, e^{- \frac{y}{2}}
e^{- \frac{1}{2} e^{-y}}
$$
. . .
2020-06-12 14:31:08 +02:00
after a bit of math, one finally gets:
2020-06-06 02:53:49 +02:00
$$
F_M(x) = 1 - \text{erf} \left( \frac{e^{- \frac{x}{2}}}{\sqrt{2}} \right)
$$
## Moyal QDF
The quantile (CDF\textsuperscript{-1}) is found solving for $x$:
$$
y = 1 - \text{erf} \left( \frac{e^{- \frac{x}{2}}}{\sqrt{2}} \right)
$$
hence:
$$
2020-06-07 19:59:07 +02:00
Q_M(y) = -2 \ln \left[ \sqrt{2} \, \text{erf}^{-1} (1 - y) \right]
$$
## Moyal median
2020-06-07 14:32:03 +02:00
Defined by $F(m) = \frac{1}{2}$ or $m = Q \left( \frac{1}{2} \right)$:
\begin{align*}
M(z)
2020-06-07 14:32:03 +02:00
&\thus m_M\ex = -2 \ln \left[ \sqrt{2} \,
\text{erf}^{-1} \left( \frac{1}{2} \right) \right] \\
M_{\mu \sigma}(x)
2020-06-07 14:32:03 +02:00
&\thus m_M\ex = \mu -2 \sigma \ln \left[ \sqrt{2} \,
\text{erf}^{-1} \left( \frac{1}{2} \right) \right]
\end{align*}
2020-06-06 02:53:49 +02:00
2020-06-10 18:48:17 +02:00
\setbeamercovered{}
\begin{center}
\begin{tikzpicture}[overlay]
\pause
\node [opacity=0.5, xscale=0.55, yscale=0.4 ] at (1.85,1.1) {\includegraphics{images/high.png}};
\end{tikzpicture}
\end{center}
\setbeamercovered{transparent}
## Moyal mode
Peak of the PDF:
$$
\partial_x M(x) = \partial_x \left( \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}
\left( x + e^{-x} \right)} \right)
= \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}
\left( x + e^{-x} \right)} \left( -\frac{1}{2} \right)
\left( 1 - e^{-x} \right)
$$
\begin{align*}
2020-06-07 14:32:03 +02:00
\partial_x M(z) = 0 &\thus \mu_M\ex = 0 \\
\partial_x M_{\mu \sigma}(x) = 0 &\thus \mu_M\ex = \mu \\
\end{align*}
2020-06-10 18:48:17 +02:00
\setbeamercovered{}
\begin{center}
\begin{tikzpicture}[overlay]
\pause
\node [opacity=0.5, xscale=0.18, yscale=0.25 ] at (2.4,1.8) {\includegraphics{images/high.png}};
\end{tikzpicture}
\end{center}
\setbeamercovered{transparent}
## Moyal FWHM
We need to compute the maximum value:
$$
2020-06-12 14:31:08 +02:00
M(\mu_M\ex) = \frac{1}{\sqrt{2 \pi e}} \thus M(x_{\pm}) = \frac{1}{\sqrt{8 \pi e}}
$$
2020-06-06 02:53:49 +02:00
. . .
which leads to:
$$
x_{\pm} + e^{-x_{\pm}} = 1 + 2 \ln(2) \thus
\begin{cases}
x_+ = 1 + 2 \ln(2) + W_0 \left( - \frac{1}{4 e} \right) \\
x_- = 1 + 2 \ln(2) + W_{-1} \left( - \frac{1}{4 e} \right)
\end{cases}
$$
## Moyal FWHM
$$
2020-06-10 16:23:33 +02:00
x_+ - x_- = 3.590806098... = a
$$
\begin{align*}
M(z)
2020-06-07 14:32:03 +02:00
&\thus w_M^{\text{exp}} = a \\
M_{\mu \sigma}(x)
2020-06-07 14:32:03 +02:00
&\thus w_M^{\text{exp}} = \sigma \cdot a \\
\end{align*}
2020-06-10 18:48:17 +02:00
\setbeamercovered{}
\begin{center}
\begin{tikzpicture}[overlay]
\pause
\node [opacity=0.5, xscale=0.2, yscale=0.25 ] at (1.9,1.9) {\includegraphics{images/high.png}};
\end{tikzpicture}
\end{center}
\setbeamercovered{transparent}