analistica/slides/sections/3.md

132 lines
2.8 KiB
Markdown
Raw Normal View History

# Moyal distribution
## Moyal PDF
2020-06-06 02:53:49 +02:00
Standard form:
$$
M(z) = \frac{1}{\sqrt{2 \pi}} \exp
\left[ - \frac{1}{2} \left( z + e^{-z} \right) \right]
$$
. . .
More generally:
- location parameter $\mu$
- scale parameter $\sigma$
$$
z = \frac{x - \mu}{\sigma}
\thus
M_{\mu \sigma}(x) = \frac{1}{\sqrt{2 \pi} \sigma} \exp
\left[ - \frac{1}{2} \left(
\frac{x - \mu}{\sigma}
+ e^{-\frac{x - \mu}{\sigma}} \right) \right]
$$
## Moyal CDF
The CDF $F_M(x)$ can be derived by direct integration:
$$
F_M(x) = \int\limits_{- \infty}^x dy \, M(y)
= \frac{1}{\sqrt{2 \pi}} \int\limits_{- \infty}^x dy \, e^{- \frac{y}{2}}
e^{- \frac{1}{2} e^{-y}}
$$
. . .
With the change of variable $z = e^{-\frac{y}{2}}/\sqrt{2}$:
$$
F_M(x) =
\frac{-2 \sqrt{2}}{\sqrt{2 \pi}} \int\limits_{+ \infty}^{f(x)} dz \, e^{- z^2}
\with f(x) = \frac{e^{- \frac{x}{2}}}{\sqrt{2}}
$$
## Moyal CDF
Remembering the error function
$$
2020-06-07 14:32:03 +02:00
\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x dy \, e^{-y^2}
2020-06-06 02:53:49 +02:00
$$
one finally gets:
2020-06-06 02:53:49 +02:00
$$
F_M(x) = 1 - \text{erf} \left( \frac{e^{- \frac{x}{2}}}{\sqrt{2}} \right)
$$
## Moyal QDF
The quantile (CDF\textsuperscript{-1}) is found solving for $x$:
$$
y = 1 - \text{erf} \left( \frac{e^{- \frac{x}{2}}}{\sqrt{2}} \right)
$$
hence:
$$
2020-06-07 19:59:07 +02:00
Q_M(y) = -2 \ln \left[ \sqrt{2} \, \text{erf}^{-1} (1 - y) \right]
$$
## Moyal median
2020-06-07 14:32:03 +02:00
Defined by $F(m) = \frac{1}{2}$ or $m = Q \left( \frac{1}{2} \right)$:
\begin{align*}
M(z)
2020-06-07 14:32:03 +02:00
&\thus m_M\ex = -2 \ln \left[ \sqrt{2} \,
\text{erf}^{-1} \left( \frac{1}{2} \right) \right] \\
M_{\mu \sigma}(x)
2020-06-07 14:32:03 +02:00
&\thus m_M\ex = \mu -2 \sigma \ln \left[ \sqrt{2} \,
\text{erf}^{-1} \left( \frac{1}{2} \right) \right]
\end{align*}
2020-06-06 02:53:49 +02:00
## Moyal mode
Peak of the PDF:
$$
\partial_x M(x) = \partial_x \left( \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}
\left( x + e^{-x} \right)} \right)
= \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}
\left( x + e^{-x} \right)} \left( -\frac{1}{2} \right)
\left( 1 - e^{-x} \right)
$$
\begin{align*}
2020-06-07 14:32:03 +02:00
\partial_x M(z) = 0 &\thus \mu_M\ex = 0 \\
\partial_x M_{\mu \sigma}(x) = 0 &\thus \mu_M\ex = \mu \\
\end{align*}
## Moyal FWHM
We need to compute the maximum value:
$$
M(\mu) = \frac{1}{\sqrt{2 \pi e}} \thus M(x_{\pm}) = \frac{1}{\sqrt{8 \pi e}}
$$
2020-06-06 02:53:49 +02:00
. . .
which leads to:
$$
x_{\pm} + e^{-x_{\pm}} = 1 + 2 \ln(2) \thus
\begin{cases}
x_+ = 1 + 2 \ln(2) + W_0 \left( - \frac{1}{4 e} \right) \\
x_- = 1 + 2 \ln(2) + W_{-1} \left( - \frac{1}{4 e} \right)
\end{cases}
$$
## Moyal FWHM
$$
2020-06-10 16:23:33 +02:00
x_+ - x_- = 3.590806098... = a
$$
\begin{align*}
M(z)
2020-06-07 14:32:03 +02:00
&\thus w_M^{\text{exp}} = a \\
M_{\mu \sigma}(x)
2020-06-07 14:32:03 +02:00
&\thus w_M^{\text{exp}} = \sigma \cdot a \\
\end{align*}