2.9 KiB
Exercise 6
Generating points according to Fraunhofer diffraction
The diffraction of a plane wave thorough a round slit must be simulated by
generating N =
50'000 points according to the intensity distribution
I(\theta)
on a screen at a great distance L
from the slit iself:
I(\theta) = \frac{E^2}{2} \left( \frac{2 \pi a^2 \cos{\theta}}{L}
\frac{J_1(x)}{x} \right)^2 \with x = k a \sin{\theta}
where:
E
is the electric field amplitude, default setE = \SI{1e4}{V/m}
;a
is the radius of the slit aperture, default seta = \SI{0.01}{m}
;\theta
is the angle specified in @fig:fenditure;J_1
is the Bessel function of first order;k
is the wavenumber, default setk = \SI{1e-4}{m^{-1}}
;L
default setL = \SI{1}{m}
.
\begin{figure} \hypertarget{fig:fenditure}{% \centering \begin{tikzpicture} \definecolor{cyclamen}{RGB}{146, 24, 43} % Walls \draw [thick] (-1,3) -- (1,3) -- (1,0.3) -- (1.2,0.3) -- (1.2,3) -- (9,3); \draw [thick] (-1,-3) -- (1,-3) -- (1,-0.3) -- (1.2,-0.3) -- (1.2,-3) -- (9,-3); \draw [thick] (10,3) -- (9.8,3) -- (9.8,-3) -- (10,-3); % Lines \draw [thick, gray] (0.7,0.3) -- (0.5,0.3); \draw [thick, gray] (0.7,-0.3) -- (0.5,-0.3); \draw [thick, gray] (0.6,0.3) -- (0.6,-0.3); \draw [thick, gray] (1.2,0) -- (9.8,0); \draw [thick, gray] (1.2,-0.1) -- (1.2,0.1); \draw [thick, gray] (9.8,-0.1) -- (9.8,0.1); \draw [thick, cyclamen] (1.2,0) -- (9.8,-2); \draw [thick, cyclamen] (7,0) to [out=-90, in=50] (6.6,-1.23); % Nodes \node at (0,0) {$2a$}; \node at (5.5,0.4) {$L$}; \node [cyclamen] at (5.5,-0.4) {$\theta$}; \node [rotate=-90] at (10.2,0) {screen}; \end{tikzpicture} \caption{Fraunhofer diffraction.}\label{fig:fenditure} } \end{figure}
Once again, \theta
, which must be evenly distributed on half sphere, can be
generated only as a function of a variable x
uniformely distributed between
0 and 1. Therefore:
\begin{align*} \frac{d^2 P}{d\omega^2} = const = \frac{1}{2 \pi} &\thus d^2 P = \frac{1}{2 \pi} d\omega^2 = \frac{1}{2 \pi} d\phi \sin{\theta} d\theta \ &\thus \frac{dP}{d\theta} = \int_0^{2 \pi} d\phi \frac{1}{2 \pi} \sin{\theta} = \frac{1}{2 \pi} \sin{\theta} , 2 \pi = \sin{\theta} \end{align*}
\begin{align*} \theta = \theta (x) &\thus \frac{dP}{d\theta} = \frac{dP}{dx} \cdot \left| \frac{dx}{d\theta} \right| = \left. \frac{dP}{dx} \middle/ , \left| \frac{d\theta}{dx} \right| \right. \ &\thus \sin{\theta} = \left. 1 \middle/ , \left| \frac{d\theta}{dx} \right| \right. \end{align*}
Since \theta \in [0, \pi/2]
, then the absolute value symbol can be omitted:
\begin{align*} \frac{d\theta}{dx} = \frac{1}{\sin{\theta}} &\thus d\theta \sin(\theta) = dx \ &\thus - \cos (\theta') |_{0}^{\theta} = x(\theta) - x(0) = x - 0 = x \ &\thus - \cos(\theta) + 1 =x \ &\thus \theta = \text{acos} (1 -x) \end{align*}