5.4 KiB
@1 ----------------------------------------------------------------------------
Numero di condizionamento
È il rapporto tra la variazione percentuale del risultato e la variazione percentuale del dato in ingresso. È un parametro utile per controllare se un problema sia mal o ben condizionato. Nel caso di una funzione f, questo parametro si riduce ad essere
x f'(x) / f(x)
e il limite per l'incremento dei dati iniziali tendente a zero è detto
fattore di amplificazione
e il problema potrebbe essere mal condizionato
soltanto per determinati valori di x.
@2 ----------------------------------------------------------------------------
Probabilità condizionata
La seconda uguaglianza è valida se A e B sono eventi indipendenti.
P(A ⋂ B) P(A) P(B)
P(A|B) = -------- = --------- = P(A) P(B) P(B)
da cui si ottiene il teorema di Bayes
:
P(A ⋂ B) \
P(A|B) = -------- | P(B) | P(B|A) P(A) > P(A|B) = ----------- P(B ⋂ A) | P(B) P(B|A) = -------- | P(A) /
Correlazione tra variabili
Si può usare per determinare se una teoria sia valida oppure no dato un certo
campione sperimentale (A è la teoria e B sono i dati). P(A ⋂ B) è la joint pdf.
Le convoluzioni di Mellin e Fourier
servono per trovare la pdf di una
variabile che è rispettivamente il prodotto o la somma di altre due variabili
con pdf nota (dimostrazione cartacea).
La covarianza
cov(x, y) è definita come:
cov(x, y) = E[x * y] - (μx * μy) = E[(x - μx)*(y - μy)]
e il coefficiente di correlazione è definito come:
ρ = cov(x, y)/(σx * σy)
ed è compreso tra -1 e 1. Dice quanto le varibili siano correlate: se è nullo,
non lo sono per niente; se è positivo, sono inclinate in avanti, altrimenti
sono inclinate in dietro.
Per dei dati è definita la matrice di covarianza
V (se sono indipendenti,
sarà diagonale, con gli errori quadrati come entrate). Se poi ho delle
grandezze che dipendono da questi dati, la loro matrice di covarianza U può
essere calcolata da quella iniziale come:
U = AVA^T con Aij = ∂_xi yj
dove A è quindi la matrice del cambio di base nel caso di un cambio di variabili. In teoria questa cosa funziona solo se le y dipendono linearmente dalle x su dimensioni comparabili con le σ. Importante: eventuali errori sistematici si sommano in quadratura su tutta la matrice di covarianza.
Distribuzioni di probabilità
Abbiamo visto diversi tipi:
-
Binomiale / N \ E[n] = Np P(n, N, p) = | | p^n (1 + p)^(N - n) con \ n / V[n] = Np*(p-1)
da cui si può poi ricavare la multinomiale.
-
Poissoniana
ν^n
P(n, ν) = --- e^(-ν) con E[n] = V[n] = ν n!
Si ottiene dal caso precedente per N→∞ e p→0 con N*p = ν.
-
Uniforme 1 E[x] = (a + b)/2 P(x, b, a) = ----- con b - a V[x] = (b - a)^2/12
-
Gaussiana 1 / (x - μ)^2 \ E[x] = μ G(x, μ, σ) = -------- e^| - --------- | con √(2 π) σ \ 2 σ^2 / V[x] = σ^2
È il limite delle prime due distribuzioni per N→∞.
Il teorema centrale
del limite dice che se una variabile è la somma di N
variabli indipendenti tutte con la stessa pdf con valore medio μi e devstd σi,
allora tale variabile ha distribuzione Normale con:
μ = Σμi e σ² = Σσi²
@3 ----------------------------------------------------------------------------
Momenti di una distribuzione
A parte il valore medio e la varianza, solitamente si definiscono skewness e kurtosis:
| (x - X)³ | | (x - X)⁴ |
γ = E | -------- | k = E | -------- | - 3 | σ³ | | σ⁴ |
dove X è la media campionaria e 3 è la kurtosis della Gaussiana.
Test di ipotesi
Se ho dei dati sperimentali e devo scegliere tra due (o più) ipotesi, devo
costruire una statistica di test
che avrà una propria pdf e in questa porre
un valore di soglia. Anche la pdf della statistica di test avrà una pdf o
l'altra a seconda di quale delle due ipotesi sia vera.
- Se è vera l'ipotesi nulla, l'area dal cut a +∞ è detta significanza α e 1 - α è detto livello di confidenza (o efficienza).
- Se è vera l'ipotesi alternativa, se l'area da -∞ al cut è β, allora 1 - β è detta potenza del test (o purezza). Si chiama errore di prima specie se si scarta l'ipotesi nulla quando invece è vera ed errore di seconda specie quando la si accetta e invece è falsa. Noi abbiamo sempre controllato solo qual è la pdf della statistica di test nel caso in cui l'ipotesi nulla sia vera e abbiamo posto il livello di confidenza al 95%, ovvero α = 5%. La potenza è detta anche purezza perché è la probabilità di scambiare "rumore per segnale", mentre l'intervallo di confidenza si dice anche efficienza perché è la probabilità di scambiare "il segnale per segnale".
Il lemma di Neyemann Pearson
dice che la statistica di test che massimizza la
purezza una volta fissata l'efficienza è il rapporto delle Likelihood:
L(H0)/L(H1).
o comunque il rapporto delle probabilità di ottenere il campione misurato secondo le due ipotesi.