4.0 KiB
Trapani test
A pathological distribution
Because of its fat tail: \begin{align*} \mu_1 &= \text{E}\left[|x|\right] \longrightarrow + \infty \ \mu_2 &= \text{E}\left[|x|^2\right] \longrightarrow + \infty \end{align*}
. . .
No closed form for parameters \thus
numerical estimations
. . .
For a Moyal PDF: \begin{align*} E_M[x] &= \mu + \sigma [ \gamma + \ln(2) ] \ V_M[x] &= \frac{\pi^2 \sigma^2}{2} \end{align*}
Infinite moments
- Check whether a moment is finite or infinite \begin{align*} \text{infinite} &\thus Landau \ \text{finite} &\thus Moyal \end{align*}
. . .
Trapani test
Trapani test
::: incremental
- Random variable
\left\{ x_i \right\}
sampled from a distributionf
- Sample moments according to
f
moments H_0
:\mu_k \longrightarrow + \infty
- Statistic with 1 dof chi-squared distribution
:::
Trapani test
- Start with
\left\{ x_i \right\}^N
and compute\mu_k
as:\mu_k = \frac{1}{N} \sum_{i = 1}^N |x_i|^k
. . .
- Generate
r
points\left\{ \xi_j\right\}^r
according toG(0, 1)
and define\left\{ a_j \right\}^r
as:a_j = \sqrt{e^{\mu_k}} \cdot \xi_j \thus G'\left( 0, \sqrt{e^{\mu_k}} \right)
. . .
The greater \mu^k
, the 'larger' G'
- if
\mu_k \longrightarrow + \infty \thus a_j
distributed uniformly
Trapani test
- Define the sequence:
\left\{ \zeta_j (u) \right\}^r
as:\zeta_j (u) = \theta( u - a_j) \with \theta - \text{Heaviside}
. . .
\begin{center} \begin{tikzpicture} % line \draw [line width=3, ->, cyclamen] (0,0) -- (10,0); \node [right] at (10,0) {$u$}; % tic \draw [thick] (5,-0.3) -- (5,0.3); \node [above] at (5,0.3) {$u_0$}; % aj tics \draw [thick, cyclamen] (1,-0.2) -- (1,0.2); \node [below right, cyclamen] at (1,-0.2) {$a_{j+2}$}; \draw [thick, cyclamen] (2,-0.2) -- (2,0.2); \node [below right, cyclamen] at (2,-0.2) {$a_j$}; \draw [thick, cyclamen] (5.2,-0.2) -- (5.2,0.2); \node [below right, cyclamen] at (5.2,-0.2) {$a_{j+2}$}; \draw [thick, cyclamen] (6,-0.2) -- (6,0.2); \node [below right, cyclamen] at (6,-0.2) {$a_{j+3}$}; \draw [thick, cyclamen] (8.5,-0.2) -- (8.5,0.2); \node [below right, cyclamen] at (8.5,-0.2) {$a_{j+4}$}; % notes \node [below] at (1,-1) {0}; \node [below] at (2,-1) {0}; \node [below] at (5.2,-1) {1}; \node [below] at (6,-1) {1}; \node [below] at (8.5,-1) {1}; \draw [thick, ->] (1,-0.5) -- (1,-1); \draw [thick, ->] (2,-0.5) -- (2,-1); \draw [thick, ->] (5.2,-0.5) -- (5.2,-1); \draw [thick, ->] (6,-0.5) -- (6,-1); \draw [thick, ->] (8.5,-0.5) -- (8.5,-1); \end{tikzpicture} \end{center}
. . .
If a_j
uniformly distributed and N \rightarrow + \infty
:
\zeta_j (u)
Bernoulli PDF withP(\zeta_j (u) = 1) = \frac{1}{2}
Trapani test
- Define the function
\vartheta (u)
as:
\vartheta (u) = \frac{2}{\sqrt{r}}
\left[ \sum_{j} \zeta_j (u) - \frac{r}{2} \right]
. . .
If a_j
uniformly distributed and N \rightarrow + \infty
, for the CLT:
\sum_j \zeta_j (u) \hence
G \left( \frac{r}{2}, \frac{r}{4} \right)
\thus \vartheta (u) \hence
G \left( 0, 1 \right)
. . .
- Test statistic:
\Theta = \int_{\underbar{u}}^{\bar{u}} du \, \vartheta^2 (u) \psi(u)
Trapani test
According to L. Trapani [@trapani15]:
r = o(N) \hence r = N^{0.75}
\underbar{u} = 1 \quad \wedge \quad \bar{u} = 1
\psi(u) = \chi_{[\underbar{u}, \bar{u}]}
. . .
\mu_k
must be scale invariant for k > 1
:
\tilde{\mu_k} = \frac{\mu_k}{ \left( \mu_{\phi} \right)^{k/\phi} }
\with \phi \in (0, k)
Trapani test
If \mu_k \ne + \infty \hence \left\{ a_j \right\}
are not uniformly distributed
\vspace{20pt}
Rewriting:
\vartheta (u) = \frac{2}{\sqrt{r}}
\left[ \sum_{j} \zeta_j (u) - \frac{r}{2} \right]
= \frac{2}{\sqrt{r}}
\sum_{j} \left[ \zeta_j (u) - \frac{1}{2} \right]
\vspace{20pt}
Residues become very large \hence
$p$-values decreases.