analistica/slides/sections/6.md

182 lines
4.0 KiB
Markdown
Raw Normal View History

2020-06-10 16:23:33 +02:00
# Trapani test
2020-06-07 19:59:07 +02:00
2020-06-08 18:02:21 +02:00
2020-06-10 16:23:33 +02:00
## A pathological distribution
2020-06-07 19:59:07 +02:00
2020-06-10 16:23:33 +02:00
Because of its fat tail:
\begin{align*}
\mu_1 &= \text{E}\left[|x|\right] \longrightarrow + \infty \\
\mu_2 &= \text{E}\left[|x|^2\right] \longrightarrow + \infty
\end{align*}
2020-06-08 18:02:21 +02:00
2020-06-10 16:23:33 +02:00
. . .
No closed form for parameters $\thus$ numerical estimations
2020-06-07 19:59:07 +02:00
2020-06-08 18:02:21 +02:00
. . .
2020-06-10 16:23:33 +02:00
For a Moyal PDF:
\begin{align*}
E_M[x] &= \mu + \sigma [ \gamma + \ln(2) ] \\
V_M[x] &= \frac{\pi^2 \sigma^2}{2}
\end{align*}
2020-06-08 18:02:21 +02:00
2020-06-07 19:59:07 +02:00
2020-06-10 16:23:33 +02:00
## Infinite moments
2020-06-07 19:59:07 +02:00
2020-06-10 16:23:33 +02:00
- Check whether a moment is finite or infinite
\begin{align*}
\text{infinite} &\thus Landau \\
\text{finite} &\thus Moyal
\end{align*}
2020-06-07 19:59:07 +02:00
2020-06-10 16:23:33 +02:00
. . .
2020-06-07 19:59:07 +02:00
2020-06-10 16:23:33 +02:00
# Trapani test
2020-06-07 19:59:07 +02:00
2020-06-10 16:23:33 +02:00
## Trapani test
::: incremental
- Random variable $\left\{ x_i \right\}$ sampled from a distribution $f$
- Sample moments according to $f$ moments
- $H_0$: $\mu_k \longrightarrow + \infty$
- Statistic with 1 dof chi-squared distribution
2020-06-07 19:59:07 +02:00
:::
2020-06-10 16:23:33 +02:00
## Trapani test
- Start with $\left\{ x_i \right\}^N$ and compute $\mu_k$ as:
2020-06-07 19:59:07 +02:00
$$
2020-06-10 16:23:33 +02:00
\mu_k = \frac{1}{N} \sum_{i = 1}^N |x_i|^k
2020-06-07 19:59:07 +02:00
$$
2020-06-10 16:23:33 +02:00
. . .
- Generate $r$ points $\left\{ \xi_j\right\}^r$ according to $G(0, 1)$ and define
$\left\{ a_j \right\}^r$ as:
$$
a_j = \sqrt{e^{\mu_k}} \cdot \xi_j
\thus G'\left( 0, \sqrt{e^{\mu_k}} \right)
$$
2020-06-07 19:59:07 +02:00
. . .
2020-06-10 16:23:33 +02:00
The greater $\mu^k$, the 'larger' $G'$
2020-06-07 19:59:07 +02:00
2020-06-10 16:23:33 +02:00
- if $\mu_k \longrightarrow + \infty \thus a_j$ distributed uniformly
2020-06-08 18:02:21 +02:00
2020-06-10 16:23:33 +02:00
## Trapani test
- Define the sequence: $\left\{ \zeta_j (u) \right\}^r$ as:
2020-06-08 18:02:21 +02:00
$$
2020-06-10 16:23:33 +02:00
\zeta_j (u) = \theta( u - a_j) \with \theta - \text{Heaviside}
2020-06-08 18:02:21 +02:00
$$
2020-06-10 16:23:33 +02:00
. . .
\begin{center}
\begin{tikzpicture}
% line
\draw [line width=3, ->, cyclamen] (0,0) -- (10,0);
\node [right] at (10,0) {$u$};
% tic
\draw [thick] (5,-0.3) -- (5,0.3);
\node [above] at (5,0.3) {$u_0$};
% aj tics
\draw [thick, cyclamen] (1,-0.2) -- (1,0.2);
\node [below right, cyclamen] at (1,-0.2) {$a_{j+2}$};
\draw [thick, cyclamen] (2,-0.2) -- (2,0.2);
\node [below right, cyclamen] at (2,-0.2) {$a_j$};
\draw [thick, cyclamen] (5.2,-0.2) -- (5.2,0.2);
\node [below right, cyclamen] at (5.2,-0.2) {$a_{j+2}$};
\draw [thick, cyclamen] (6,-0.2) -- (6,0.2);
\node [below right, cyclamen] at (6,-0.2) {$a_{j+3}$};
\draw [thick, cyclamen] (8.5,-0.2) -- (8.5,0.2);
\node [below right, cyclamen] at (8.5,-0.2) {$a_{j+4}$};
% notes
\node [below] at (1,-1) {0};
\node [below] at (2,-1) {0};
\node [below] at (5.2,-1) {1};
\node [below] at (6,-1) {1};
\node [below] at (8.5,-1) {1};
\draw [thick, ->] (1,-0.5) -- (1,-1);
\draw [thick, ->] (2,-0.5) -- (2,-1);
\draw [thick, ->] (5.2,-0.5) -- (5.2,-1);
\draw [thick, ->] (6,-0.5) -- (6,-1);
\draw [thick, ->] (8.5,-0.5) -- (8.5,-1);
\end{tikzpicture}
\end{center}
2020-06-08 18:02:21 +02:00
2020-06-10 16:23:33 +02:00
. . .
2020-06-08 18:02:21 +02:00
2020-06-10 16:23:33 +02:00
If $a_j$ uniformly distributed and $N \rightarrow + \infty$:
2020-06-08 18:02:21 +02:00
2020-06-10 16:23:33 +02:00
- $\zeta_j (u)$ Bernoulli PDF with $P(\zeta_j (u) = 1) = \frac{1}{2}$
2020-06-08 18:02:21 +02:00
2020-06-10 16:23:33 +02:00
## Trapani test
- Define the function $\vartheta (u)$ as:
2020-06-08 18:02:21 +02:00
$$
2020-06-10 16:23:33 +02:00
\vartheta (u) = \frac{2}{\sqrt{r}}
\left[ \sum_{j} \zeta_j (u) - \frac{r}{2} \right]
2020-06-08 18:02:21 +02:00
$$
. . .
2020-06-10 16:23:33 +02:00
If $a_j$ uniformly distributed and $N \rightarrow + \infty$, for the CLT:
$$
\sum_j \zeta_j (u) \hence
G \left( \frac{r}{2}, \frac{r}{4} \right)
\thus \vartheta (u) \hence
G \left( 0, 1 \right)
$$
2020-06-08 18:02:21 +02:00
2020-06-10 16:23:33 +02:00
. . .
2020-06-08 18:02:21 +02:00
2020-06-10 16:23:33 +02:00
- Test statistic:
$$
\Theta = \int_{\underbar{u}}^{\bar{u}} du \, \vartheta^2 (u) \psi(u)
$$
2020-06-08 18:02:21 +02:00
2020-06-10 16:23:33 +02:00
## Trapani test
2020-06-08 18:02:21 +02:00
2020-06-10 16:23:33 +02:00
According to L. Trapani [@trapani15]:
2020-06-08 18:02:21 +02:00
2020-06-10 16:23:33 +02:00
- $r = o(N) \hence r = N^{0.75}$
- $\underbar{u} = 1 \quad \wedge \quad \bar{u} = 1$
- $\psi(u) = \chi_{[\underbar{u}, \bar{u}]}$
2020-06-08 18:02:21 +02:00
. . .
2020-06-10 16:23:33 +02:00
$\mu_k$ must be scale invariant for $k > 1$:
2020-06-08 18:02:21 +02:00
2020-06-10 16:23:33 +02:00
$$
\tilde{\mu_k} = \frac{\mu_k}{ \left( \mu_{\phi} \right)^{k/\phi} }
\with \phi \in (0, k)
$$
2020-06-08 18:02:21 +02:00
2020-06-10 16:23:33 +02:00
## Trapani test
2020-06-08 18:02:21 +02:00
2020-06-10 16:23:33 +02:00
If $\mu_k \ne + \infty \hence \left\{ a_j \right\}$ are not uniformly distributed
\vspace{20pt}
Rewriting:
$$
\vartheta (u) = \frac{2}{\sqrt{r}}
\left[ \sum_{j} \zeta_j (u) - \frac{r}{2} \right]
= \frac{2}{\sqrt{r}}
\sum_{j} \left[ \zeta_j (u) - \frac{1}{2} \right]
$$
2020-06-08 18:02:21 +02:00
2020-06-10 16:23:33 +02:00
\vspace{20pt}
2020-06-07 19:59:07 +02:00
2020-06-10 16:23:33 +02:00
Residues become very large $\hence$ $p$-values decreases.