2.9 KiB
2.9 KiB
Moyal distribution
Moyal PDF
M(x) = \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} \left[ x + e^{-x} \right]}
\vspace{10pt}
\text{More generally:} \hspace{15pt}
\begin{cases}
\text{location parameter:} \quad &\mu_M \\
\text{scale parameter:} \quad &\sigma_M
\end{cases}
\vspace{10pt}
x \rightarrow \frac{x - \mu}{\sigma_M} \thus
M_{\mu \sigma_M}(x) = \frac{1}{\sqrt{2 \pi} \sigma_M}
e^{-\frac{1}{2} \left[ \frac{x - \mu}{\sigma_M} + e^{- \frac{x - \mu}{\sigma_M}} \right]}
Moyal CDF
The cumulative distribution function F_M(x)
can be derived from the
pdf M(x)
integrating:
F_M(x) = \frac{1}{\sqrt{2 \pi}} \int\limits_{- \infty}^x dy \, M(y)
= \frac{1}{\sqrt{2 \pi}} \int\limits_{- \infty}^x dy \, e^{- \frac{y}{2}}
e^{- \frac{1}{2} e^{-y}}
Moyal CDF
with the change of variable:
z = \frac{1}{\sqrt{2}} e^{-\frac{y}{2}}
the CDF can be rewritten as:
F_M(x) =
\frac{-2 \sqrt{2}}{\sqrt{2 \pi}} \int\limits_{+ \infty}^{f(x)} dz \, e^{- z^2}
\with f(x) = \frac{e^{- \frac{x}{2}}}{\sqrt{2}}
Moyal CDF
given the definition of the error function erf
:
\text{erf} = \frac{2}{\sqrt{\pi}} \int_0^x dy \, e^{-y^2}
one finally gets:
F_M(x) = 1 - \text{erf} \left( \frac{e^{- \frac{x}{2}}}{\sqrt{2}} \right)
Moyal QDF
The quantile is defined as the inverse of the CDF:
F_M(x) = 1 - \text{erf} \left( \frac{e^{- \frac{x}{2}}}{\sqrt{2}} \right)
hence:
Q(x) = -2 \ln \left[ \sqrt{2} \, \text{erf}^{(-1)} (1 - F_M(x)) \right]
Moyal median
The median is defined as the point at which F_M(x) = 1/2
:
\vspace{15pt}
M(x) \thus
m_M = -2 \ln \left[ \sqrt{2} \,
\text{erf}^{(-1)} \left( \frac{1}{2} \right) \right]
\vspace{15pt}
M_{\mu \sigma_M}(x) \thus
m_M = \mu -2 \sigma_M \ln \left[ \sqrt{2} \,
\text{erf}^{(-1)} \left( \frac{1}{2} \right) \right]
Moyal mode
Peak of the PDF \vspace{10pt}
\partial_x M(x) = \partial_x \left( \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}
\left( x + e^{-x} \right)} \right)
= \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}
\left( x + e^{-x} \right)} \left( -\frac{1}{2} \right)
\left( 1 - e^{-x} \right)
\vspace{10pt}
\partial_x M(x) = 0 \thus \mu_M = 0
\vspace{10pt}
\partial_x M_{\mu \sigma_M}(x) = 0 \thus \mu_M = \mu
Moyal FWHM
We need to compute the maximum value:
M(\mu) = \frac{1}{\sqrt{2 \pi e}} \thus M(x_{\pm}) = \frac{1}{\sqrt{8 \pi e}}
which leads to:
x_{\pm} + e^{-x_{\pm}} = 1 + 2 \ln(2) \thus
\begin{cases}
x_+ = a + W_0 \left( - \frac{1}{4 e} \right) \\
x_- = a + W_{-1} \left( - \frac{1}{4 e} \right)
\end{cases}
with a = 1 + 2 \ln(2)
Moyal FWHM
\text{FWHM}_L = x_+ - x_- = 3.590806098...
\vspace{15pt}
M(x) \thus \text{FWHM}_M = 3.590806098...
\vspace{15pt}
M_{\mu \sigma_M}(x) \thus \text{FWHM}_M = \sigma_M \cdot 3.590806098...