215 lines
4.6 KiB
Markdown
215 lines
4.6 KiB
Markdown
# Trapani test
|
|
|
|
|
|
## Trapani test
|
|
|
|
::: incremental
|
|
|
|
- Random variable $\left\{ x_i \right\}$ sampled from a distribution $f$
|
|
- Sample moments estimate as $f$ moments
|
|
- $H_0$: $\mu_k \longrightarrow + \infty$
|
|
- Statistic with 1 dof $\chi^2$ distribution
|
|
- $p$-value $\hence$ reject or accept $H_0$
|
|
|
|
:::
|
|
|
|
|
|
## Infinite moments
|
|
|
|
- Generate a sample $L$ from a Landau PDF
|
|
- Generate a sample $M$ from a Moyal PDF
|
|
|
|
. . .
|
|
|
|
\vspace{20pt}
|
|
|
|
:::: {.columns}
|
|
::: {.column width=50% .c}
|
|
For the Landau PDF:
|
|
\begin{align*}
|
|
\mu_1 &= \text{E}\left[|x|\right] = + \infty \\
|
|
\mu_2 &= \text{E}\left[|x|^2\right] = + \infty
|
|
\end{align*}
|
|
:::
|
|
|
|
::: {.column width=50%}
|
|
. . .
|
|
|
|
For the Moyal PDF:
|
|
\begin{align*}
|
|
\mu_1 &= \text{E}\left[|x|\right] < + \infty \\
|
|
\mu_2 &= \text{E}\left[|x|^2\right] < + \infty
|
|
\end{align*}
|
|
:::
|
|
::::
|
|
|
|
|
|
## Infinite moments
|
|
|
|
- Previous tests: points sampled from Landau PDF?
|
|
|
|
. . .
|
|
|
|
- Trapani test: check whether a moment is finite or infinite
|
|
\begin{align*}
|
|
\text{infinite} &\thus \text{Landau} \\
|
|
\text{finite} &\thus \text{not Landau}
|
|
\end{align*}
|
|
|
|
. . .
|
|
|
|
- Compatibility test with $\mu_k = + \infty$
|
|
|
|
. . .
|
|
|
|
- If points were sampled from a Cauchy distribution...
|
|
|
|
|
|
## Trapani test
|
|
|
|
![](images/cauchy-pdf.pdf)
|
|
|
|
|
|
## Trapani test
|
|
|
|
- Start with $\left\{ x_i \right\}^N$ and compute $\mu_k$ as:
|
|
$$
|
|
\mu_k = \frac{1}{N} \sum_{i = 1}^N |x_i|^k
|
|
$$
|
|
|
|
. . .
|
|
|
|
- Generate $r$ points $\left\{ \xi_j\right\}^r$ according to $G(0, 1)$ and define
|
|
$\left\{ a_j \right\}^r$ as:
|
|
$$
|
|
a_j = \sqrt{e^{\mu_k}} \cdot \xi_j
|
|
\thus G\left( 0, \sqrt{e^{\mu_k}} \right)
|
|
$$
|
|
|
|
. . .
|
|
|
|
The greater $\mu^k$, the 'larger' $G\left( 0, \sqrt{e^{\mu_k}} \right)$
|
|
$$
|
|
\begin{cases}
|
|
\mu_k \longrightarrow + \infty \\
|
|
r \longrightarrow + \infty
|
|
\end{cases}
|
|
\thus a_j \text{ distributed uniformly}
|
|
$$
|
|
|
|
|
|
## Trapani test
|
|
|
|
- Define the sequence: $\left\{ \zeta_j (u) \right\}^r$ as:
|
|
$$
|
|
\zeta_j (u) = \theta( u - a_j) \with \theta - \text{Heaviside}
|
|
$$
|
|
|
|
. . .
|
|
|
|
\begin{center}
|
|
\begin{tikzpicture}[>=Stealth]
|
|
% line
|
|
\draw [line width=3, ->, cyclamen] (0,0) -- (10,0);
|
|
\node [right] at (10,0) {$u$};
|
|
% tic
|
|
\draw [thick] (5,-0.3) -- (5,0.3);
|
|
\node [above] at (5,0.3) {$u_0$};
|
|
% aj tics
|
|
\draw [thick, cyclamen] (1,-0.2) -- (1,0.2);
|
|
\node [below right, cyclamen] at (1,-0.2) {$a_{j+2}$};
|
|
\draw [thick, cyclamen] (2,-0.2) -- (2,0.2);
|
|
\node [below right, cyclamen] at (2,-0.2) {$a_j$};
|
|
\draw [thick, cyclamen] (5.2,-0.2) -- (5.2,0.2);
|
|
\node [below right, cyclamen] at (5.2,-0.2) {$a_{j+2}$};
|
|
\draw [thick, cyclamen] (6,-0.2) -- (6,0.2);
|
|
\node [below right, cyclamen] at (6,-0.2) {$a_{j+3}$};
|
|
\draw [thick, cyclamen] (8.5,-0.2) -- (8.5,0.2);
|
|
\node [below right, cyclamen] at (8.5,-0.2) {$a_{j+4}$};
|
|
% notes
|
|
\node [below] at (1,-1) {0};
|
|
\node [below] at (2,-1) {0};
|
|
\node [below] at (5.2,-1) {1};
|
|
\node [below] at (6,-1) {1};
|
|
\node [below] at (8.5,-1) {1};
|
|
\draw [thick, ->] (1,-0.5) -- (1,-1);
|
|
\draw [thick, ->] (2,-0.5) -- (2,-1);
|
|
\draw [thick, ->] (5.2,-0.5) -- (5.2,-1);
|
|
\draw [thick, ->] (6,-0.5) -- (6,-1);
|
|
\draw [thick, ->] (8.5,-0.5) -- (8.5,-1);
|
|
\end{tikzpicture}
|
|
\end{center}
|
|
|
|
. . .
|
|
|
|
If $a_j$ uniformly distributed:
|
|
|
|
- $\zeta_j (u)$ Bernoulli PDF with $P\left( \zeta_j (u) = 1 \right) = \frac{1}{2}$
|
|
$\hence \text{E}[\zeta_j]_j = \frac{1}{2}
|
|
\quad \wedge \quad \text{Var}[\zeta_j]_j = \frac{1}{4}$
|
|
|
|
|
|
## Trapani test
|
|
|
|
- Define the function $\vartheta (u)$ as:
|
|
$$
|
|
\vartheta (u) = \frac{2}{\sqrt{r}}
|
|
\left[ \sum_{j} \zeta_j (u) - \frac{r}{2} \right]
|
|
$$
|
|
|
|
. . .
|
|
|
|
If $a_j$ uniformly distributed, for the CLT:
|
|
$$
|
|
\sum_j \zeta_j (u) \hence
|
|
G \left( \frac{r}{2}, \frac{r}{4} \right)
|
|
\thus \vartheta (u) \hence
|
|
G \left( 0, 1 \right)
|
|
$$
|
|
|
|
. . .
|
|
|
|
- Test statistic:
|
|
$$
|
|
\Theta = \int_{\underbar{u}}^{\bar{u}} du \, \vartheta^2 (u) \psi(u)
|
|
$$
|
|
|
|
|
|
## Trapani test
|
|
|
|
According to L. Trapani [@trapani15]:
|
|
|
|
- $r = o(N) \hence r = N^{0.75}$
|
|
- $\underbar{u} = -1 \quad \wedge \quad \bar{u} = 1$
|
|
- $\psi(u) = \frac{1}{\bar{u} - \underbar{u}} \, \chi_{[\underbar{u}, \bar{u}]}$
|
|
|
|
. . .
|
|
|
|
$\mu_k$ must be scale invariant for $k > 1$:
|
|
|
|
$$
|
|
\mu_k^* = \frac{\mu_k}{ \left( \mu_{\phi} \right)^{k/\phi} }
|
|
\with \phi \in (0, k)
|
|
$$
|
|
|
|
|
|
## Trapani test
|
|
|
|
If $\mu_k \ne + \infty \hence \left\{ a_j \right\}$ are not uniformly distributed
|
|
|
|
\vspace{20pt}
|
|
|
|
Rewriting:
|
|
$$
|
|
\vartheta (u) = \frac{2}{\sqrt{r}}
|
|
\left[ \sum_{j} \zeta_j (u) - \frac{r}{2} \right]
|
|
= \frac{2}{\sqrt{r}}
|
|
\sum_{j} \left[ \zeta_j (u) - \frac{1}{2} \right]
|
|
$$
|
|
|
|
\vspace{20pt}
|
|
|
|
. . .
|
|
|
|
Residues become very large $\hence$ $p$-values decreases.
|