slides: various fixes
This commit is contained in:
parent
8b781c599a
commit
41119ee9f2
@ -20,8 +20,8 @@ mainfontoptions:
|
||||
mathfont: FiraMath-Regular
|
||||
|
||||
references:
|
||||
- type: article-journal
|
||||
id: trapani15
|
||||
- id: trapani15
|
||||
type: article-journal
|
||||
author:
|
||||
family: Trapani
|
||||
given: Lorenzo
|
||||
@ -29,15 +29,14 @@ references:
|
||||
container-title: Journal of Econometrics
|
||||
issued:
|
||||
year: 2015
|
||||
- type: book
|
||||
id: silver86
|
||||
- id: silver86
|
||||
type: book
|
||||
author:
|
||||
family: Silverman
|
||||
given: Bernard W.
|
||||
title: Density Estimation for Statistics and Data Analysis
|
||||
issued:
|
||||
year: 1986
|
||||
|
||||
- id: robertson74
|
||||
type: article-journal
|
||||
author:
|
||||
|
@ -81,18 +81,18 @@ utilized as an approximation of the former.
|
||||
|
||||
. . .
|
||||
|
||||
- **Properties test**:
|
||||
- **Properties test**
|
||||
|
||||
compatibility between expected and observed PDF properties
|
||||
|
||||
. . .
|
||||
|
||||
- **Kolmogorov - Smirnov test**:
|
||||
- **Kolmogorov - Smirnov test**
|
||||
|
||||
compatibility between expected and empirical CDF
|
||||
|
||||
. . .
|
||||
|
||||
- **Trapani test**:
|
||||
- **Trapani test**
|
||||
|
||||
test for finite or infinite moments
|
||||
|
@ -29,6 +29,8 @@ How to estimate sample median, mode and FWHM?
|
||||
|
||||
\End{block}
|
||||
|
||||
. . .
|
||||
|
||||
\setbeamercovered{}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[remember picture, >=Stealth]
|
||||
@ -139,7 +141,7 @@ How to estimate sample median, mode and FWHM?
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[remember picture, overlay]
|
||||
% region
|
||||
\draw [cyclamen, ultra thick] (f1) -- (f2);
|
||||
\draw [ultra thick] (f1) -- (f2);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
@ -145,7 +145,8 @@ $$
|
||||
If $a_j$ uniformly distributed:
|
||||
|
||||
- $\zeta_j (u)$ Bernoulli PDF with $P\left( \zeta_j (u) = 1 \right) = \frac{1}{2}$
|
||||
$\hence E[\zeta_j]_j = \frac{1}{2} \quad \wedge \quad V[\zeta_j]_j = \frac{1}{4}$
|
||||
$\hence \text{E}[\zeta_j]_j = \frac{1}{2}
|
||||
\quad \wedge \quad \text{Var}[\zeta_j]_j = \frac{1}{4}$
|
||||
|
||||
|
||||
## Trapani test
|
||||
|
Loading…
Reference in New Issue
Block a user