diff --git a/slides/sections/0.md b/slides/sections/0.md index 66f4569..49fc9db 100644 --- a/slides/sections/0.md +++ b/slides/sections/0.md @@ -20,8 +20,8 @@ mainfontoptions: mathfont: FiraMath-Regular references: - - type: article-journal - id: trapani15 + - id: trapani15 + type: article-journal author: family: Trapani given: Lorenzo @@ -29,15 +29,14 @@ references: container-title: Journal of Econometrics issued: year: 2015 - - type: book - id: silver86 + - id: silver86 + type: book author: family: Silverman given: Bernard W. title: Density Estimation for Statistics and Data Analysis issued: year: 1986 - - id: robertson74 type: article-journal author: diff --git a/slides/sections/1.md b/slides/sections/1.md index fe81c31..aa351a7 100644 --- a/slides/sections/1.md +++ b/slides/sections/1.md @@ -81,18 +81,18 @@ utilized as an approximation of the former. . . . -- **Properties test**: +- **Properties test** compatibility between expected and observed PDF properties . . . -- **Kolmogorov - Smirnov test**: +- **Kolmogorov - Smirnov test** compatibility between expected and empirical CDF . . . -- **Trapani test**: +- **Trapani test** test for finite or infinite moments diff --git a/slides/sections/4.md b/slides/sections/4.md index e651514..6f1879b 100644 --- a/slides/sections/4.md +++ b/slides/sections/4.md @@ -29,6 +29,8 @@ How to estimate sample median, mode and FWHM? \End{block} +. . . + \setbeamercovered{} \begin{center} \begin{tikzpicture}[remember picture, >=Stealth] @@ -139,7 +141,7 @@ How to estimate sample median, mode and FWHM? \begin{center} \begin{tikzpicture}[remember picture, overlay] % region - \draw [cyclamen, ultra thick] (f1) -- (f2); + \draw [ultra thick] (f1) -- (f2); \end{tikzpicture} \end{center} diff --git a/slides/sections/6.md b/slides/sections/6.md index f50b8d1..492bc6f 100644 --- a/slides/sections/6.md +++ b/slides/sections/6.md @@ -145,7 +145,8 @@ $$ If $a_j$ uniformly distributed: - $\zeta_j (u)$ Bernoulli PDF with $P\left( \zeta_j (u) = 1 \right) = \frac{1}{2}$ - $\hence E[\zeta_j]_j = \frac{1}{2} \quad \wedge \quad V[\zeta_j]_j = \frac{1}{4}$ + $\hence \text{E}[\zeta_j]_j = \frac{1}{2} + \quad \wedge \quad \text{Var}[\zeta_j]_j = \frac{1}{4}$ ## Trapani test