1.3 KiB
1.3 KiB
Goal
Goal
Test whether sample comes from a Landau distribution
. . .
- sample
L
from Landau PDF - sample
M
from Moyal PDF
. . .
H_0
: sample from Landau PDF
- accept
H_0
forL
? - reject
H_0
forM
?
Why Moyal?
Landau and Moyal PDFs are similar
\includegraphics<1>[height=5.5cm]{images/moyal-photo.jpg}
\includegraphics<2>[height=5.5cm]{images/mondau-photo.jpg}
\includegraphics<3>[height=5.5cm]{images/landau-photo.jpg}
Two similar distributions
:::: {.columns} ::: {.column width=50%} Landau PDF
$$
L(x) = \frac{1}{\pi} \int \limits_{0}^{+ \infty}
dt \, e^{-t \ln(t) -xt} \sin (\pi t)
:::
::: {.column width=50%} Moyal PDF
$$
M(x) = \frac{1}{\sqrt{2 \pi}} \exp \left[ - \frac{1}{2}
\left( x + e^{- x} \right) \right]
::: ::::
\vspace{1em}
:::: {.columns} ::: {.column width=50%} :::
::: {.column width=50%} ::: ::::
Two similar distributions
Statistical tests
. . .
-
Properties test
compatibility between expected and observed PDF properties
. . .
-
Kolmogorov - Smirnov test
compatibility between expected and empirical CDF
. . .
-
Trapani test
test for finite or infinite moments