Include Numeric.Peano to solve re-export mess

This commit is contained in:
rnhmjoj 2015-06-01 22:54:38 +02:00
parent a9600701ce
commit dc17819f56
6 changed files with 232 additions and 30 deletions

View File

@ -27,9 +27,10 @@ library
Data.Number.Types, Data.Number.Types,
Data.Number.Instances, Data.Number.Instances,
Data.Number.Internal Data.Number.Internal
Data.Number.Peano
other-extensions: TypeSynonymInstances, FlexibleInstances other-extensions: TypeSynonymInstances, FlexibleInstances
build-depends: base >=4.8, numericpeano build-depends: base >=4.8
hs-source-dirs: src hs-source-dirs: src
default-language: Haskell2010 default-language: Haskell2010
ghc-options: -O2 ghc-options: -O2

View File

@ -8,4 +8,5 @@ module Data.Number
import Data.Number.Types import Data.Number.Types
import Data.Number.Instances import Data.Number.Instances
import Data.Number.Functions import Data.Number.Functions
import Numeric.Peano import Data.Number.Internal
import Data.Number.Peano

View File

@ -1,9 +1,9 @@
module Data.Number.Functions where module Data.Number.Functions where
import Numeric.Peano
import Data.Number.Types import Data.Number.Types
import Data.Number.Instances import Data.Number.Instances
import Data.Number.Internal import Data.Number.Internal
import Data.Number.Peano
-- Various -- -- Various --

View File

@ -7,8 +7,8 @@ module Data.Number.Internal
) where ) where
import Data.Number.Types import Data.Number.Types
import Data.Number.Peano
import Data.Ratio import Data.Ratio
import Numeric.Peano
type Matrix = (Whole, Whole, Whole, Whole, Whole, Whole, Whole, Whole) type Matrix = (Whole, Whole, Whole, Whole, Whole, Whole, Whole, Whole)
@ -66,28 +66,3 @@ rest E = E
rest (M E) = E rest (M E) = E
rest (M x) = M (rest x) rest (M x) = M (rest x)
rest (_:|xs) = xs rest (_:|xs) = xs
-- Peano arithmethics --
toNat :: Whole -> Nat
toNat (Whole n _) = n
(//) :: Integral a => a -> a -> a
(//) = quot
instance Real Whole where
toRational = (%1) . toInteger
instance Integral Whole where
toInteger (Whole z Pos) = (fromPeano z)
toInteger (Whole z Neg) = -(fromPeano z)
quotRem (Whole a s) (Whole b s') = (Whole q sign, Whole r Pos)
where
q = quot a b
r = a - q * b
sign | s == s' && s == Pos = Pos
| s == s' && s == Neg = Pos
| otherwise = Neg

225
src/Data/Number/Peano.hs Normal file
View File

@ -0,0 +1,225 @@
-- | Value-level Peano arithmetic.
module Data.Number.Peano where
import Prelude hiding (foldr)
import Data.Foldable (Foldable(foldr))
import Data.Ratio ((%))
-- | Lazy Peano numbers. Allow calculation with infinite values.
data Nat = Z -- ^Zero
| S Nat -- ^Successor
deriving (Show)
-- | Sign for whole numbers.
data Sign = Pos | Neg deriving (Show, Eq, Ord, Enum, Read, Bounded)
-- | Whole numbers (Z).
data Whole = Whole Nat Sign -- ^Construct a whole number out of a magnitue and a sign.
-- | The class of Peano-like constructions (i.e. Nat and Whole).
class Enum a => Peano a where
-- | Test for zero.
isZero :: a -> Bool
-- | An unobservable infinity. For all finite numbers @n@, @n < infinity@ must
-- hold, but there need not be a total function that tests whether a number
-- is infinite.
infinity :: a
-- | Converts the number to an Integer.
fromPeano :: a -> Integer
-- | Reduces the absolute value of the number by 1. If @isZero n@, then
-- @decr n = n@ and vice versa.
decr :: a -> a
-- | Negation of 'isZero'.
isSucc :: Peano n => n -> Bool
isSucc = not . isZero
-- | Peano class instance
instance Peano Nat where
isZero Z = True
isZero _ = False
infinity = S infinity
fromPeano Z = 0
fromPeano (S n) = succ $ fromPeano n
decr = pred
-- | Peano class instance
-- defines infinity (positive) and other functions handling the sign
instance Peano Whole where
isZero (Whole n _) = isZero n
infinity = Whole infinity Pos
fromPeano (Whole n Pos) = fromPeano n
fromPeano (Whole n Neg) = negate $ fromPeano n
decr (Whole n s) = Whole (pred n) s
-- | Removes at most 'S' constructors from a Peano number.
-- Outputs the number of removed constructors and the remaining number.
takeNat :: (Num a, Enum a, Ord a, Peano n) => a -> n -> (a, n)
takeNat = takeNat' 0
where
takeNat' c i n | i <= 0 = (c, n)
| isZero n = (c, n)
| otherwise = takeNat' (succ c) (pred i) (decr n)
-- | Extract the 'Nat' value of a 'Whole'
toNat :: Whole -> Nat
toNat (Whole n _) = n
-- | Alias to quot
(//) :: Integral a => a -> a -> a
(//) = quot
-- | The lower bound is zero, the upper bound is infinity.
instance Bounded Nat where
minBound = Z
maxBound = infinity
-- | The bounds are negative and positive infinity.
instance Bounded Whole where
minBound = Whole infinity Neg
maxBound = infinity
-- | The 'pred' function is bounded at Zero.
instance Enum Nat where
toEnum = fromInteger . fromIntegral
fromEnum = fromInteger . fromPeano
succ = S
pred Z = Z
pred (S n) = n
-- |'succ' and 'pred' work according to the total
-- order on the whole numbers, i.e. @succ n = n+1@ and @pred n = n-1@.
instance Enum Whole where
toEnum i | i < 0 = Whole (toEnum i) Neg
| otherwise = Whole (toEnum i) Pos
fromEnum = fromInteger . fromPeano
succ (Whole (S n) Neg) = Whole n Neg
succ (Whole n Pos) = Whole (S n) Pos
succ (Whole Z _) = Whole (S Z) Pos
pred (Whole (S n) Pos) = Whole n Pos
pred (Whole n Neg) = Whole (S n) Neg
pred (Whole Z _) = Whole (S Z) Neg
-- | Addition, multiplication, and subtraction are
-- lazy in both arguments, meaning that, in the case of infinite values,
-- they can produce an infinite stream of S-constructors. As long as
-- the callers of these functions only consume a finite amount of these,
-- the program will not hang.
--
-- @fromInteger@ is not injective in case of 'Nat', since negative integers
-- are all converted to zero ('Z').
instance Num Nat where
(+) Z n = n
(+) n Z = n
(+) (S n) (S m) = S $ S $ (+) n m
(*) Z n = Z
(*) n Z = Z
(*) (S n) (S m) = S Z + n + m + (n * m)
abs = id
signum _ = S Z
fromInteger i | i <= 0 = Z
| otherwise = S $ fromInteger $ i - 1
(-) Z n = Z
(-) n Z = n
(-) (S n) (S m) = n - m
-- | Implements arithmetics for Whole numbers
instance Num Whole where
(+) (Whole n Pos) (Whole m Pos) = Whole (n+m) Pos
(+) (Whole n Neg) (Whole m Neg) = Whole (n+m) Neg
(+) (Whole n Pos) (Whole m Neg) | n >= m = Whole (n-m) Pos
| otherwise = Whole (m-n) Neg
(+) (Whole n Neg) (Whole m Pos) = Whole m Pos + Whole n Neg
(*) (Whole n s) (Whole m t) | s == t = Whole (n*m) Pos
| otherwise = Whole (n*m) Neg
(-) n (Whole m Neg) = n + (Whole m Pos)
(-) n (Whole m Pos) = n + (Whole m Neg)
abs (Whole n s) = Whole n Pos
signum (Whole Z _) = Whole Z Pos
signum (Whole _ Pos) = Whole (S Z) Pos
signum (Whole _ Neg) = Whole (S Z) Neg
fromInteger i | i < 0 = Whole (fromInteger $ negate i) Neg
| otherwise = Whole (fromInteger i) Pos
-- |'==' and '/=' work as long as at least one operand is finite.
instance Eq Nat where
(==) Z Z = True
(==) Z (S _) = False
(==) (S _) Z = False
(==) (S n) (S m) = n == m
-- | Positive and negative zero are considered equal.
instance Eq Whole where
(==) (Whole Z _) (Whole Z _) = True
(==) (Whole n s) (Whole m t) = s == t && n == m
-- | All methods work as long as at least one operand is finite.
instance Ord Nat where
compare Z Z = EQ
compare Z (S _) = LT
compare (S _) Z = GT
compare (S n) (S m) = compare n m
-- | The ordering is the standard total order on Z. Positive and negative zero
-- are equal.
instance Ord Whole where
compare (Whole Z _) (Whole Z _) = EQ
compare (Whole _ Neg) (Whole _ Pos) = LT
compare (Whole _ Pos) (Whole _ Neg) = GT
compare (Whole n Pos) (Whole m Pos) = compare n m
compare (Whole n Neg) (Whole m Neg) = compare m n
-- | Returns the length of a foldable container as 'Nat'. The number is generated
-- lazily and thus, infinitely large containers are supported.
natLength :: Foldable f => f a -> Nat
natLength = foldr (const S) Z
-- | Since 'toRational' returns a @Ratio Integer@, it WILL NOT terminate on infinities.
instance Real Nat where
toRational = (%1) . fromPeano
-- | Since 'toRational' returns a @Ratio Integer@, it WILL NOT terminate on infinities.
instance Real Whole where
toRational = (%1) . fromPeano
-- | Since negative numbers are not allowed,
-- @'quot' = 'div'@ and @'rem' = 'mod'@. The methods 'quot', 'rem', 'div', 'mod',
-- 'quotRem' and 'divMod' will terminate as long as their first argument is
-- finite. Infinities in their second arguments are permitted and are handled
-- as follows:
--
-- @
-- n `quot` infinity = n `div` infinity = 0
-- n `rem` infinity = n `mod` infinity = n@
instance Integral Nat where
quotRem _ Z = error "divide by zero"
quotRem n (S m) = quotRem' Z n (S m)
where
quotRem' q n m | n >= m = quotRem' (S q) (n-m) m
| otherwise = (q,n)
divMod = quotRem
toInteger = fromPeano
-- | Integer conversions and division
instance Integral Whole where
toInteger = fromPeano
quotRem (Whole a s) (Whole b s') = (Whole q sign, Whole r Pos)
where
q = quot a b
r = a - q * b
sign | s == s' && s == Pos = Pos
| s == s' && s == Neg = Pos
| otherwise = Neg

View File

@ -1,6 +1,6 @@
module Data.Number.Types where module Data.Number.Types where
import Numeric.Peano import Data.Number.Peano
infixr 5 :| infixr 5 :|
data Continued a = M (Continued a) | a :| (Continued a) | E data Continued a = M (Continued a) | a :| (Continued a) | E