diff --git a/number.cabal b/number.cabal index e23b841..a4dcb08 100644 --- a/number.cabal +++ b/number.cabal @@ -27,9 +27,10 @@ library Data.Number.Types, Data.Number.Instances, Data.Number.Internal + Data.Number.Peano other-extensions: TypeSynonymInstances, FlexibleInstances - build-depends: base >=4.8, numericpeano + build-depends: base >=4.8 hs-source-dirs: src default-language: Haskell2010 ghc-options: -O2 \ No newline at end of file diff --git a/src/Data/Number.hs b/src/Data/Number.hs index 43a5d80..d6feee9 100644 --- a/src/Data/Number.hs +++ b/src/Data/Number.hs @@ -8,4 +8,5 @@ module Data.Number import Data.Number.Types import Data.Number.Instances import Data.Number.Functions -import Numeric.Peano \ No newline at end of file +import Data.Number.Internal +import Data.Number.Peano \ No newline at end of file diff --git a/src/Data/Number/Functions.hs b/src/Data/Number/Functions.hs index 7688395..1894628 100644 --- a/src/Data/Number/Functions.hs +++ b/src/Data/Number/Functions.hs @@ -1,9 +1,9 @@ module Data.Number.Functions where -import Numeric.Peano import Data.Number.Types import Data.Number.Instances import Data.Number.Internal +import Data.Number.Peano -- Various -- diff --git a/src/Data/Number/Internal.hs b/src/Data/Number/Internal.hs index 8ff6f81..3516baf 100644 --- a/src/Data/Number/Internal.hs +++ b/src/Data/Number/Internal.hs @@ -7,8 +7,8 @@ module Data.Number.Internal ) where import Data.Number.Types +import Data.Number.Peano import Data.Ratio -import Numeric.Peano type Matrix = (Whole, Whole, Whole, Whole, Whole, Whole, Whole, Whole) @@ -66,28 +66,3 @@ rest E = E rest (M E) = E rest (M x) = M (rest x) rest (_:|xs) = xs - - --- Peano arithmethics -- - -toNat :: Whole -> Nat -toNat (Whole n _) = n - -(//) :: Integral a => a -> a -> a -(//) = quot - -instance Real Whole where - toRational = (%1) . toInteger - -instance Integral Whole where - toInteger (Whole z Pos) = (fromPeano z) - toInteger (Whole z Neg) = -(fromPeano z) - - quotRem (Whole a s) (Whole b s') = (Whole q sign, Whole r Pos) - where - q = quot a b - r = a - q * b - sign | s == s' && s == Pos = Pos - | s == s' && s == Neg = Pos - | otherwise = Neg - diff --git a/src/Data/Number/Peano.hs b/src/Data/Number/Peano.hs new file mode 100644 index 0000000..7610476 --- /dev/null +++ b/src/Data/Number/Peano.hs @@ -0,0 +1,225 @@ +-- | Value-level Peano arithmetic. +module Data.Number.Peano where + +import Prelude hiding (foldr) +import Data.Foldable (Foldable(foldr)) +import Data.Ratio ((%)) + +-- | Lazy Peano numbers. Allow calculation with infinite values. +data Nat = Z -- ^Zero + | S Nat -- ^Successor + deriving (Show) + +-- | Sign for whole numbers. +data Sign = Pos | Neg deriving (Show, Eq, Ord, Enum, Read, Bounded) + +-- | Whole numbers (Z). +data Whole = Whole Nat Sign -- ^Construct a whole number out of a magnitue and a sign. + +-- | The class of Peano-like constructions (i.e. Nat and Whole). +class Enum a => Peano a where + -- | Test for zero. + isZero :: a -> Bool + -- | An unobservable infinity. For all finite numbers @n@, @n < infinity@ must + -- hold, but there need not be a total function that tests whether a number + -- is infinite. + infinity :: a + -- | Converts the number to an Integer. + fromPeano :: a -> Integer + -- | Reduces the absolute value of the number by 1. If @isZero n@, then + -- @decr n = n@ and vice versa. + decr :: a -> a + +-- | Negation of 'isZero'. +isSucc :: Peano n => n -> Bool +isSucc = not . isZero + +-- | Peano class instance +instance Peano Nat where + isZero Z = True + isZero _ = False + infinity = S infinity + fromPeano Z = 0 + fromPeano (S n) = succ $ fromPeano n + decr = pred + +-- | Peano class instance +-- defines infinity (positive) and other functions handling the sign +instance Peano Whole where + isZero (Whole n _) = isZero n + infinity = Whole infinity Pos + fromPeano (Whole n Pos) = fromPeano n + fromPeano (Whole n Neg) = negate $ fromPeano n + decr (Whole n s) = Whole (pred n) s + +-- | Removes at most 'S' constructors from a Peano number. +-- Outputs the number of removed constructors and the remaining number. +takeNat :: (Num a, Enum a, Ord a, Peano n) => a -> n -> (a, n) +takeNat = takeNat' 0 + where + takeNat' c i n | i <= 0 = (c, n) + | isZero n = (c, n) + | otherwise = takeNat' (succ c) (pred i) (decr n) + +-- | Extract the 'Nat' value of a 'Whole' +toNat :: Whole -> Nat +toNat (Whole n _) = n + +-- | Alias to quot +(//) :: Integral a => a -> a -> a +(//) = quot + +-- | The lower bound is zero, the upper bound is infinity. +instance Bounded Nat where + minBound = Z + maxBound = infinity + +-- | The bounds are negative and positive infinity. +instance Bounded Whole where + minBound = Whole infinity Neg + maxBound = infinity + +-- | The 'pred' function is bounded at Zero. +instance Enum Nat where + toEnum = fromInteger . fromIntegral + fromEnum = fromInteger . fromPeano + succ = S + pred Z = Z + pred (S n) = n + +-- |'succ' and 'pred' work according to the total +-- order on the whole numbers, i.e. @succ n = n+1@ and @pred n = n-1@. +instance Enum Whole where + toEnum i | i < 0 = Whole (toEnum i) Neg + | otherwise = Whole (toEnum i) Pos + fromEnum = fromInteger . fromPeano + succ (Whole (S n) Neg) = Whole n Neg + succ (Whole n Pos) = Whole (S n) Pos + succ (Whole Z _) = Whole (S Z) Pos + pred (Whole (S n) Pos) = Whole n Pos + pred (Whole n Neg) = Whole (S n) Neg + pred (Whole Z _) = Whole (S Z) Neg + +-- | Addition, multiplication, and subtraction are +-- lazy in both arguments, meaning that, in the case of infinite values, +-- they can produce an infinite stream of S-constructors. As long as +-- the callers of these functions only consume a finite amount of these, +-- the program will not hang. +-- +-- @fromInteger@ is not injective in case of 'Nat', since negative integers +-- are all converted to zero ('Z'). +instance Num Nat where + (+) Z n = n + (+) n Z = n + (+) (S n) (S m) = S $ S $ (+) n m + + (*) Z n = Z + (*) n Z = Z + (*) (S n) (S m) = S Z + n + m + (n * m) + + abs = id + + signum _ = S Z + + fromInteger i | i <= 0 = Z + | otherwise = S $ fromInteger $ i - 1 + + (-) Z n = Z + (-) n Z = n + (-) (S n) (S m) = n - m + +-- | Implements arithmetics for Whole numbers +instance Num Whole where + (+) (Whole n Pos) (Whole m Pos) = Whole (n+m) Pos + (+) (Whole n Neg) (Whole m Neg) = Whole (n+m) Neg + (+) (Whole n Pos) (Whole m Neg) | n >= m = Whole (n-m) Pos + | otherwise = Whole (m-n) Neg + (+) (Whole n Neg) (Whole m Pos) = Whole m Pos + Whole n Neg + + (*) (Whole n s) (Whole m t) | s == t = Whole (n*m) Pos + | otherwise = Whole (n*m) Neg + + (-) n (Whole m Neg) = n + (Whole m Pos) + (-) n (Whole m Pos) = n + (Whole m Neg) + + abs (Whole n s) = Whole n Pos + + signum (Whole Z _) = Whole Z Pos + signum (Whole _ Pos) = Whole (S Z) Pos + signum (Whole _ Neg) = Whole (S Z) Neg + + fromInteger i | i < 0 = Whole (fromInteger $ negate i) Neg + | otherwise = Whole (fromInteger i) Pos + + +-- |'==' and '/=' work as long as at least one operand is finite. +instance Eq Nat where + (==) Z Z = True + (==) Z (S _) = False + (==) (S _) Z = False + (==) (S n) (S m) = n == m + +-- | Positive and negative zero are considered equal. +instance Eq Whole where + (==) (Whole Z _) (Whole Z _) = True + (==) (Whole n s) (Whole m t) = s == t && n == m + +-- | All methods work as long as at least one operand is finite. +instance Ord Nat where + compare Z Z = EQ + compare Z (S _) = LT + compare (S _) Z = GT + compare (S n) (S m) = compare n m + +-- | The ordering is the standard total order on Z. Positive and negative zero +-- are equal. +instance Ord Whole where + compare (Whole Z _) (Whole Z _) = EQ + compare (Whole _ Neg) (Whole _ Pos) = LT + compare (Whole _ Pos) (Whole _ Neg) = GT + compare (Whole n Pos) (Whole m Pos) = compare n m + compare (Whole n Neg) (Whole m Neg) = compare m n + +-- | Returns the length of a foldable container as 'Nat'. The number is generated +-- lazily and thus, infinitely large containers are supported. +natLength :: Foldable f => f a -> Nat +natLength = foldr (const S) Z + +-- | Since 'toRational' returns a @Ratio Integer@, it WILL NOT terminate on infinities. +instance Real Nat where + toRational = (%1) . fromPeano + +-- | Since 'toRational' returns a @Ratio Integer@, it WILL NOT terminate on infinities. +instance Real Whole where + toRational = (%1) . fromPeano + +-- | Since negative numbers are not allowed, +-- @'quot' = 'div'@ and @'rem' = 'mod'@. The methods 'quot', 'rem', 'div', 'mod', +-- 'quotRem' and 'divMod' will terminate as long as their first argument is +-- finite. Infinities in their second arguments are permitted and are handled +-- as follows: +-- +-- @ +-- n `quot` infinity = n `div` infinity = 0 +-- n `rem` infinity = n `mod` infinity = n@ +instance Integral Nat where + quotRem _ Z = error "divide by zero" + quotRem n (S m) = quotRem' Z n (S m) + where + quotRem' q n m | n >= m = quotRem' (S q) (n-m) m + | otherwise = (q,n) + + divMod = quotRem + toInteger = fromPeano + +-- | Integer conversions and division +instance Integral Whole where + toInteger = fromPeano + + quotRem (Whole a s) (Whole b s') = (Whole q sign, Whole r Pos) + where + q = quot a b + r = a - q * b + sign | s == s' && s == Pos = Pos + | s == s' && s == Neg = Pos + | otherwise = Neg diff --git a/src/Data/Number/Types.hs b/src/Data/Number/Types.hs index 618b490..141f273 100644 --- a/src/Data/Number/Types.hs +++ b/src/Data/Number/Types.hs @@ -1,6 +1,6 @@ module Data.Number.Types where -import Numeric.Peano +import Data.Number.Peano infixr 5 :| data Continued a = M (Continued a) | a :| (Continued a) | E