205 lines
4.7 KiB
Python
205 lines
4.7 KiB
Python
|
# coding: utf-8
|
|||
|
from __future__ import print_function, division, unicode_literals
|
|||
|
|
|||
|
import numpy as np
|
|||
|
import uncertainties.umath as um
|
|||
|
import matplotlib.pyplot as plt
|
|||
|
from lab import *
|
|||
|
|
|||
|
##
|
|||
|
## Impedance of a capacitor (II)
|
|||
|
## (all SI units)
|
|||
|
|
|||
|
C = ufloat(8.43e-7, 1e-8) # capacitor
|
|||
|
R = ufloat(996, 4) # resistor
|
|||
|
|
|||
|
# frequency
|
|||
|
nu = array(60, 150, 200, 300, 400, 500, 700, 800,
|
|||
|
1e3, 1.5e3, 2e3, 2.5e3, 3e3, 4e3, 5e3, 10e3)
|
|||
|
|
|||
|
# V input
|
|||
|
Va = array(10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0,
|
|||
|
10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 9.92)/2
|
|||
|
|
|||
|
# V output
|
|||
|
Vb = array(2.40, 4.32, 5.02, 6.12, 6.86, 7.30, 7.90, 8.28,
|
|||
|
8.55, 9.24, 9.30, 9.40, 9.60, 9.62, 9.65, 9.70)/2
|
|||
|
|
|||
|
# time offset Va - Vb
|
|||
|
Oab = array(3.4e-3, 980e-6, 602e-6, 295e-6, 176e-6, 116e-6, 63e-6, 46e-6,
|
|||
|
31e-6, 12e-6, 8e-6, 4.8e-6, 4.1e-6, 2.1e-6, 1.2e-6, 0.4e-6)*(-1)
|
|||
|
|
|||
|
# time offset I - V
|
|||
|
Oiv = array(4.2e-3, 1.71e-3, 1.26e-3, 820e-6, 630e-6, 500e-6, 348e-6, 318e-6,
|
|||
|
248e-6, 164e-6, 125e-6, 101e-6, 83e-6, 62e-6, 50e-6, 25e-6)*(-1)
|
|||
|
|
|||
|
|
|||
|
om = 2*np.pi*nu # angular frequency
|
|||
|
I = Vb/R.n # output current
|
|||
|
Vab = Va - Vb # tension drop
|
|||
|
Fab = om * Oab # phase difference Vᵢ - Vₒ
|
|||
|
Fiv = om * Oiv # phase difference I - Vₒ
|
|||
|
|
|||
|
Z = Vab/I * np.exp(1j*Fiv) # impedance
|
|||
|
H1 = Vab/Vb * np.exp(1j*Fab) # transfer function ΔV→Vb
|
|||
|
H2 = Vb/Va * np.exp(1j*Fab) # transfer function Va→Vb
|
|||
|
|
|||
|
|
|||
|
# estimate uncertainties
|
|||
|
Evb, Eva = ufloat(Vb[0], 1e-3), ufloat(Va[0], 0.1)
|
|||
|
sigmaF = (om[0]*ufloat(Oiv[0], 3e-5)).s
|
|||
|
sigmaZ = (R*(Eva - Evb)/Evb).s
|
|||
|
sigmaH1 = ((Eva - Evb)/Evb).s
|
|||
|
sigmaH2 = ((Evb - Eva)/Evb).s
|
|||
|
|
|||
|
|
|||
|
# plot and fit Z(ν)
|
|||
|
plt.figure(4)
|
|||
|
plt.clf()
|
|||
|
|
|||
|
# magnitude
|
|||
|
plt.subplot(2, 1, 1)
|
|||
|
plt.title('impedance (RC circuit)')
|
|||
|
plt.ylabel('magnitude (kΩ)')
|
|||
|
plt.semilogx(nu, abs(Z)/1e3, 'o', color="#36913d", markersize=4.5)
|
|||
|
|
|||
|
# fit Y=kX where Y=|Z|, X=1/ν, k=1/2πC
|
|||
|
k = simple_linear(1/nu, abs(Z), sigmaZ)
|
|||
|
Co = 1/(2*np.pi*k)
|
|||
|
f = lambda x: k.n/x
|
|||
|
|
|||
|
x = np.arange(nu.min()-10, nu.max(), 10)
|
|||
|
plt.semilogx(x, f(x)/1e3, color='#589f22')
|
|||
|
|
|||
|
# phase
|
|||
|
plt.subplot(2, 1, 2)
|
|||
|
plt.xlabel('frequency (Hz)')
|
|||
|
plt.ylabel('phase (rad)')
|
|||
|
plt.ylim(-1.8,-1)
|
|||
|
plt.semilogx(nu, Fiv, 'o', color="#36913d", markersize=4.5)
|
|||
|
plt.semilogx(x, x/x * -np.pi/2, color="#589f22")
|
|||
|
plt.show()
|
|||
|
|
|||
|
phi = sample(Fiv).val()
|
|||
|
alpha = check_measures(phi, ufloat(-np.pi/2, 0))
|
|||
|
|
|||
|
print(mformat('''
|
|||
|
φ: {} rad
|
|||
|
-π/2: {:.4} rad
|
|||
|
|
|||
|
compatibility test:
|
|||
|
α={:.2f}, α>ε: {}
|
|||
|
''', phi, -np.pi/2, alpha, alpha>epsilon))
|
|||
|
|
|||
|
alpha = check_measures(C, Co)
|
|||
|
beta = chi_squared_fit(nu, abs(Z), f, sigmaZ)
|
|||
|
|
|||
|
print(mformat('''
|
|||
|
k: {}
|
|||
|
C: {} F
|
|||
|
Cₒ: {} F
|
|||
|
|
|||
|
compatibility test:
|
|||
|
α={:.2f}, α>ε: {}
|
|||
|
|
|||
|
χ² test:
|
|||
|
β={:.2f}, β>ε: {}
|
|||
|
''', k, C, Co,
|
|||
|
alpha, alpha>epsilon,
|
|||
|
beta, beta>epsilon))
|
|||
|
|
|||
|
|
|||
|
# plot, fit H₁(ν)
|
|||
|
plt.figure(5)
|
|||
|
plt.clf()
|
|||
|
|
|||
|
# magnitude
|
|||
|
plt.subplot(2,1,1)
|
|||
|
plt.title('transfer function 1')
|
|||
|
plt.ylabel('magnitude (Vout-Vin / Vout)')
|
|||
|
plt.semilogx(nu, abs(H1), 'o', color="#9b2e83", markersize=4.5)
|
|||
|
|
|||
|
# fit Y=kX where Y=|H1|, X=1/ν, k=1/2πRC
|
|||
|
k = simple_linear(1/nu, abs(H1), sigmaH1)
|
|||
|
RCo = 1/(2*np.pi*k)
|
|||
|
f = lambda x: k.n/x
|
|||
|
|
|||
|
x = np.arange(nu.min()-10, nu.max(), 10)
|
|||
|
plt.semilogx(x, f(x), color='#9b2e83')
|
|||
|
|
|||
|
# phase
|
|||
|
plt.subplot(2,1,2)
|
|||
|
plt.xlabel('frequency (Hz)')
|
|||
|
plt.ylabel('phase (rad)')
|
|||
|
plt.semilogx(nu, Fab, 'o', color="#3a44ad", markersize=4.5)
|
|||
|
plt.semilogx(x, -np.pi/2+np.arctan(2*np.pi*x*R.n*Co.n))
|
|||
|
plt.show()
|
|||
|
|
|||
|
alpha = check_measures(R*C, RCo)
|
|||
|
beta = chi_squared_fit(nu, abs(H1), f, sigmaH1)
|
|||
|
|
|||
|
print(mformat('''
|
|||
|
k: {} Hz
|
|||
|
RC: {} s
|
|||
|
RCₒ: {} s
|
|||
|
|
|||
|
compatibility test:
|
|||
|
α={:.2f}, α>ε: {}
|
|||
|
|
|||
|
χ² test:
|
|||
|
β={:.2f}, β>ε: {}
|
|||
|
''', k, R*C, RCo,
|
|||
|
alpha, alpha>epsilon,
|
|||
|
beta, beta>epsilon))
|
|||
|
|
|||
|
|
|||
|
# plot, fit H₂(ν)
|
|||
|
plt.figure(6)
|
|||
|
plt.clf()
|
|||
|
|
|||
|
# magnitude
|
|||
|
plt.subplot(2,1,1)
|
|||
|
plt.title('transfer function 2')
|
|||
|
plt.ylabel('magnitude (Vout / Vin)')
|
|||
|
plt.semilogx(nu, abs(H2), 'o', color="#9b2e83", markersize=4.5)
|
|||
|
|
|||
|
# fit Y=a+bX where Y=1/|H₂|², X=1/ν², a=1, b=1/(2πRC)²
|
|||
|
a,b = linear(1/nu**2, 1/abs(H2)**2, 0.01)
|
|||
|
RCo = 1/(2*np.pi*um.sqrt(b))
|
|||
|
f = lambda x: 1/np.sqrt(1 + b.n/x**2) # magnitude
|
|||
|
g = lambda x: -np.pi/2 + np.arctan(2*np.pi*x*R.n*C.n) # phase
|
|||
|
|
|||
|
x = np.arange(nu.min()-10, nu.max(), 10)
|
|||
|
plt.semilogx(x, f(x), color='#9b2e83')
|
|||
|
|
|||
|
# phase
|
|||
|
plt.subplot(2,1,2)
|
|||
|
plt.xlabel('frequency (Hz)')
|
|||
|
plt.ylabel('phase (rad)')
|
|||
|
plt.semilogx(nu, Fab, 'o', color="#3a44ad", markersize=4.5)
|
|||
|
plt.semilogx(x, g(x))
|
|||
|
plt.show()
|
|||
|
|
|||
|
alpha = check_measures(R*C, RCo)
|
|||
|
beta = chi_squared_fit(nu, abs(H2), f, sigmaH2)
|
|||
|
gamma = chi_squared_fit(nu, Fab, g, sigmaF)
|
|||
|
|
|||
|
print(mformat('''
|
|||
|
b: {}
|
|||
|
RC: {} s
|
|||
|
RCₒ: {} s
|
|||
|
|
|||
|
compatibility test:
|
|||
|
α={:.2f}, α>ε: {}
|
|||
|
|
|||
|
χ² test (magnitude):
|
|||
|
β={:.2f}, β>ε: {}
|
|||
|
|
|||
|
χ² test (phase):
|
|||
|
γ={:.2f}, γ>ε: {}
|
|||
|
''', b, R*C, RCo,
|
|||
|
alpha, alpha>epsilon,
|
|||
|
beta, beta>epsilon,
|
|||
|
gamma, gamma>epsilon))
|
|||
|
|