# coding: utf-8 from __future__ import print_function, division, unicode_literals import numpy as np import uncertainties.umath as um import matplotlib.pyplot as plt from lab import * ## ## Impedance of a capacitor (II) ## (all SI units) C = ufloat(8.43e-7, 1e-8) # capacitor R = ufloat(996, 4) # resistor # frequency nu = array(60, 150, 200, 300, 400, 500, 700, 800, 1e3, 1.5e3, 2e3, 2.5e3, 3e3, 4e3, 5e3, 10e3) # V input Va = array(10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 9.92)/2 # V output Vb = array(2.40, 4.32, 5.02, 6.12, 6.86, 7.30, 7.90, 8.28, 8.55, 9.24, 9.30, 9.40, 9.60, 9.62, 9.65, 9.70)/2 # time offset Va - Vb Oab = array(3.4e-3, 980e-6, 602e-6, 295e-6, 176e-6, 116e-6, 63e-6, 46e-6, 31e-6, 12e-6, 8e-6, 4.8e-6, 4.1e-6, 2.1e-6, 1.2e-6, 0.4e-6)*(-1) # time offset I - V Oiv = array(4.2e-3, 1.71e-3, 1.26e-3, 820e-6, 630e-6, 500e-6, 348e-6, 318e-6, 248e-6, 164e-6, 125e-6, 101e-6, 83e-6, 62e-6, 50e-6, 25e-6)*(-1) om = 2*np.pi*nu # angular frequency I = Vb/R.n # output current Vab = Va - Vb # tension drop Fab = om * Oab # phase difference Vᵢ - Vₒ Fiv = om * Oiv # phase difference I - Vₒ Z = Vab/I * np.exp(1j*Fiv) # impedance H1 = Vab/Vb * np.exp(1j*Fab) # transfer function ΔV→Vb H2 = Vb/Va * np.exp(1j*Fab) # transfer function Va→Vb # estimate uncertainties Evb, Eva = ufloat(Vb[0], 1e-3), ufloat(Va[0], 0.1) sigmaF = (om[0]*ufloat(Oiv[0], 3e-5)).s sigmaZ = (R*(Eva - Evb)/Evb).s sigmaH1 = ((Eva - Evb)/Evb).s sigmaH2 = ((Evb - Eva)/Evb).s # plot and fit Z(ν) plt.figure(4) plt.clf() # magnitude plt.subplot(2, 1, 1) plt.title('impedance (RC circuit)') plt.ylabel('magnitude (kΩ)') plt.semilogx(nu, abs(Z)/1e3, 'o', color="#36913d", markersize=4.5) # fit Y=kX where Y=|Z|, X=1/ν, k=1/2πC k = simple_linear(1/nu, abs(Z), sigmaZ) Co = 1/(2*np.pi*k) f = lambda x: k.n/x x = np.arange(nu.min()-10, nu.max(), 10) plt.semilogx(x, f(x)/1e3, color='#589f22') # phase plt.subplot(2, 1, 2) plt.xlabel('frequency (Hz)') plt.ylabel('phase (rad)') plt.ylim(-1.8,-1) plt.semilogx(nu, Fiv, 'o', color="#36913d", markersize=4.5) plt.semilogx(x, x/x * -np.pi/2, color="#589f22") plt.show() phi = sample(Fiv).val() alpha = check_measures(phi, ufloat(-np.pi/2, 0)) print(mformat(''' φ: {} rad -π/2: {:.4} rad compatibility test: α={:.2f}, α>ε: {} ''', phi, -np.pi/2, alpha, alpha>epsilon)) alpha = check_measures(C, Co) beta = chi_squared_fit(nu, abs(Z), f, sigmaZ) print(mformat(''' k: {} C: {} F Cₒ: {} F compatibility test: α={:.2f}, α>ε: {} χ² test: β={:.2f}, β>ε: {} ''', k, C, Co, alpha, alpha>epsilon, beta, beta>epsilon)) # plot, fit H₁(ν) plt.figure(5) plt.clf() # magnitude plt.subplot(2,1,1) plt.title('transfer function 1') plt.ylabel('magnitude (Vout-Vin / Vout)') plt.semilogx(nu, abs(H1), 'o', color="#9b2e83", markersize=4.5) # fit Y=kX where Y=|H1|, X=1/ν, k=1/2πRC k = simple_linear(1/nu, abs(H1), sigmaH1) RCo = 1/(2*np.pi*k) f = lambda x: k.n/x x = np.arange(nu.min()-10, nu.max(), 10) plt.semilogx(x, f(x), color='#9b2e83') # phase plt.subplot(2,1,2) plt.xlabel('frequency (Hz)') plt.ylabel('phase (rad)') plt.semilogx(nu, Fab, 'o', color="#3a44ad", markersize=4.5) plt.semilogx(x, -np.pi/2+np.arctan(2*np.pi*x*R.n*Co.n)) plt.show() alpha = check_measures(R*C, RCo) beta = chi_squared_fit(nu, abs(H1), f, sigmaH1) print(mformat(''' k: {} Hz RC: {} s RCₒ: {} s compatibility test: α={:.2f}, α>ε: {} χ² test: β={:.2f}, β>ε: {} ''', k, R*C, RCo, alpha, alpha>epsilon, beta, beta>epsilon)) # plot, fit H₂(ν) plt.figure(6) plt.clf() # magnitude plt.subplot(2,1,1) plt.title('transfer function 2') plt.ylabel('magnitude (Vout / Vin)') plt.semilogx(nu, abs(H2), 'o', color="#9b2e83", markersize=4.5) # fit Y=a+bX where Y=1/|H₂|², X=1/ν², a=1, b=1/(2πRC)² a,b = linear(1/nu**2, 1/abs(H2)**2, 0.01) RCo = 1/(2*np.pi*um.sqrt(b)) f = lambda x: 1/np.sqrt(1 + b.n/x**2) # magnitude g = lambda x: -np.pi/2 + np.arctan(2*np.pi*x*R.n*C.n) # phase x = np.arange(nu.min()-10, nu.max(), 10) plt.semilogx(x, f(x), color='#9b2e83') # phase plt.subplot(2,1,2) plt.xlabel('frequency (Hz)') plt.ylabel('phase (rad)') plt.semilogx(nu, Fab, 'o', color="#3a44ad", markersize=4.5) plt.semilogx(x, g(x)) plt.show() alpha = check_measures(R*C, RCo) beta = chi_squared_fit(nu, abs(H2), f, sigmaH2) gamma = chi_squared_fit(nu, Fab, g, sigmaF) print(mformat(''' b: {} RC: {} s RCₒ: {} s compatibility test: α={:.2f}, α>ε: {} χ² test (magnitude): β={:.2f}, β>ε: {} χ² test (phase): γ={:.2f}, γ>ε: {} ''', b, R*C, RCo, alpha, alpha>epsilon, beta, beta>epsilon, gamma, gamma>epsilon))