add min/max functions and theorems

This commit is contained in:
rnhmjoj 2016-11-16 22:05:43 +01:00
parent 2c4ab33bc4
commit c631d24d38
No known key found for this signature in database
GPG Key ID: 362BB82B7E496B7C

View File

@ -19,7 +19,7 @@ import Data.Bool
import Data.Integer (Integer)
import Data.Function (id, const, ())
import Data.TypeClass (Eq, Show, Num, Enum, Bounded)
import Data.Singletons.TH hiding ((:<), (:>), (%:<), Refl)
import Data.Singletons.TH hiding ((:<), (:>), (%:<), Refl, Min, sMin, Max, sMax)
import qualified Data.TypeClass as T
@ -66,6 +66,15 @@ singletons [d|
(>) 𝔹
n > m = (¬) (n < m)
min
min Z _ = Z
min _ Z = Z
min (S n) (S m) = S (min n m)
max
max Z n = n
max n Z = n
max (S n) (S m) = S (max n m)
|]
@ -157,6 +166,17 @@ plus_assoc (SS a) b c = cong SS (plus_assoc a b c)
-- | Commutative property of addition
plus_commut S n S m (n :+ m) : (m :+ n)
plus_commut n SZ = plus_right_id n
plus_commut n SZ = plus_right_id n
plus_commut n (SS m) =
sym (succ_right n m) cong SS (plus_commut n m) succ_left m n
-- | Minimum of itself
min_self S n Min n n : n
min_self SZ = Refl
min_self (SS n) = cong SS (min_self n)
-- | Maximum of itself
max_self S n Max n n : n
max_self SZ = Refl
max_self (SS n) = cong SS (max_self n)