From c631d24d384b291ccdd55b14c0993354d42a8e9d Mon Sep 17 00:00:00 2001 From: rnhmjoj Date: Wed, 16 Nov 2016 22:05:43 +0100 Subject: [PATCH] add min/max functions and theorems --- src/Data/Nat.hs | 24 ++++++++++++++++++++++-- 1 file changed, 22 insertions(+), 2 deletions(-) diff --git a/src/Data/Nat.hs b/src/Data/Nat.hs index 56f27e1..1cf2634 100644 --- a/src/Data/Nat.hs +++ b/src/Data/Nat.hs @@ -19,7 +19,7 @@ import Data.Bool import Data.Integer (Integer) import Data.Function (id, const, (∘)) import Data.TypeClass (Eq, Show, Num, Enum, Bounded) -import Data.Singletons.TH hiding ((:<), (:>), (%:<), Refl) +import Data.Singletons.TH hiding ((:<), (:>), (%:<), Refl, Min, sMin, Max, sMax) import qualified Data.TypeClass as T @@ -66,6 +66,15 @@ singletons [d| (>) ∷ ℕ → ℕ → 𝔹 n > m = (¬) (n < m) + min ∷ ℕ → ℕ → ℕ + min Z _ = Z + min _ Z = Z + min (S n) (S m) = S (min n m) + + max ∷ ℕ → ℕ → ℕ + max Z n = n + max n Z = n + max (S n) (S m) = S (max n m) |] @@ -157,6 +166,17 @@ plus_assoc (SS a) b c = cong SS (plus_assoc a b c) -- | Commutative property of addition plus_commut ∷ Sℕ n → Sℕ m → (n :+ m) :≡ (m :+ n) -plus_commut n SZ = plus_right_id n +plus_commut n SZ = plus_right_id n plus_commut n (SS m) = sym (succ_right n m) ∾ cong SS (plus_commut n m) ∾ succ_left m n + +-- | Minimum of itself +min_self ∷ Sℕ n → Min n n :≡ n +min_self SZ = Refl +min_self (SS n) = cong SS (min_self n) + +-- | Maximum of itself +max_self ∷ Sℕ n → Max n n :≡ n +max_self SZ = Refl +max_self (SS n) = cong SS (max_self n) +