Add regular polyhedra

This commit is contained in:
Michele Guerini Rocco 2014-06-06 14:38:01 -04:00
parent d0505e4614
commit 75a0d031ec
7 changed files with 13 additions and 2 deletions

View File

@ -1,8 +1,10 @@
# Geometria solida # Geometria solida
Riassunto dello spazio e della geometria solida. Riassunto dello spazio e della geometria solida.
### License ### License
Dual licensed under the MIT and GPL licenses: Dual licensed under the MIT and GPL licenses:
http://www.opensource.org/licenses/mit-license.php http://www.opensource.org/licenses/mit-license.php
http://www.gnu.org/licenses/gpl.html http://www.gnu.org/licenses/gpl.html
Images of regular Polyhedra belong to [Cyp](http://en.wikipedia.org/wiki/User:Cyp) and are distributed under CC BY-SA 3.0:
https://creativecommons.org/licenses/by-sa/2.0/

BIN
images/dodecaedro.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 43 KiB

BIN
images/esaedro.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

BIN
images/icosaedro.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 46 KiB

BIN
images/ottaedro.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 69 KiB

BIN
images/tetraedro.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

View File

@ -233,8 +233,17 @@ Si chiama tronco di piramide la parte di piramide compresa tra due piani piani p
## Poliedri regolari ## Poliedri regolari
![Cubo](images/16.png) ![Cubo](images/16.png)
Un poliedro si dice regolare quando le sue facce sono poligoni regolari congruenti e i suoi angoloidi e diedri sono congruenti. Un poliedro si dice regolare quando le sue facce sono poligoni regolari congruenti e i suoi angoloidi e diedri sono congruenti.
I poliedri regolari o solidi platonici sono 5: tetraedro, esaedro o cubo, ottaedro, dodecaedro e icosaedro.
| Poliedro | facce | vertici | spigoli | superfice | volume |
| ------------------------------------------- | ----- | ------- | ------- | ---------------------------------- | -----------------------------|
| ![tetraedro](images/tetraedro) tetraedro | 4 | 4 | 6 | $s^2 sqrt{3}$ | $frac{1}{12}s^3 sqrt{2}$ |
| ![esaedro](images/esaedro) esaedro | 6 | 8 | 12 | $6s^2$ | $s^3$ |
| ![ottaedro](images/ottaedro) ottaedro | 8 | 6 | 12 | $2s^2 sqrt{3}$ | $frac{1}{3}s^3 sqrt{2}$ |
| ![dodecaedro](images/dodecaedro) dodecaedro | 12 | 20 | 30 | $15s^2 sqrt{frac{5+2 sqrt{5}}{5}}$ | $s^3 frac{15+7sqrt{15}}{4}$ |
| ![icosaedro](images/icosaedro) icosaedro | 20 | 12 | 30 | $s^2 5sqrt{3}$ | $s^3 frac{5(3+sqrt{5})}{12}$ |
# Solidi di rotazione # Solidi di rotazione
I solidi di rotazione sono figure solide ottenute dalla rotazione completa di un poligono attorno ad una retta. I solidi di rotazione sono figure solide ottenute dalla rotazione completa di un poligono attorno ad una retta.