gray/src/polarization.f90
Michele Guerini Rocco 0a63a20e73
src/dispersion.f90: cleanup
- merge branch with a method to control the speed of iteration and
  improve the convergence of `warmdisp` (thanks Thomas)

- unify `diel_tens_fr` and `diel_tens_wr` into a single subroutine,
  `dielectric_tensor`

- stay as close as possible to the notation of Daniela Farina's paper

- make `sox` an integer

- mark more subroutines as pure

- add more comments
2023-04-12 23:45:49 +02:00

157 lines
3.9 KiB
Fortran

module polarization
interface stokes
module procedure stokes_ce,stokes_ell
end interface
contains
subroutine stokes_ce(ext,eyt,qq,uu,vv)
use const_and_precisions, only : wp_,two
implicit none
! arguments
complex(wp_), intent(in) :: ext,eyt
real(wp_), intent(out) :: qq,uu,vv
qq = abs(ext)**2 - abs(eyt)**2
uu = two* dble(ext*dconjg(eyt))
vv = two*dimag(ext*dconjg(eyt))
end subroutine stokes_ce
subroutine stokes_ell(chi,psi,qq,uu,vv)
use const_and_precisions, only : wp_,two
implicit none
! arguments
real(wp_), intent(in) :: chi,psi
real(wp_), intent(out) :: qq,uu,vv
qq=cos(two*chi)*cos(two*psi)
uu=cos(two*chi)*sin(two*psi)
vv=sin(two*chi)
end subroutine stokes_ell
subroutine polellipse(qq,uu,vv,psi,chi)
use const_and_precisions, only : wp_,half
implicit none
! arguments
real(wp_), intent(in) :: qq,uu,vv
real(wp_), intent(out) :: psi,chi
! real(wp_) :: ll,aa,bb,ell
! ll = sqrt(qq**2 + uu**2)
! aa = sqrt(half*(1 + ll))
! bb = sqrt(half*(1 - ll))
! ell = bb/aa
psi = half*atan2(uu,qq)
chi = half*asin(vv)
end subroutine polellipse
subroutine pol_limit(anv,bv,bres,sox,ext,eyt) !,gam)
use const_and_precisions, only : wp_,ui=>im,zero,one
implicit none
! arguments
real(wp_), dimension(3), intent(in) :: anv,bv
real(wp_), intent(in) :: bres
integer, intent(in) :: sox
complex(wp_), intent(out) :: ext,eyt
! real(wp_), optional, intent(out) :: gam
! local variables
real(wp_), dimension(3) :: bnv
real(wp_) :: anx,any,anz,an2,an,anpl2,anpl,anpr,anxy, &
btot,yg,den,dnl,del0,ff,ff2,sngam,csgam
!
btot = sqrt(bv(1)**2+bv(2)**2+bv(3)**2)
bnv = bv/btot
yg = btot/bres
anx = anv(1)
any = anv(2)
anz = anv(3)
an2 = anx**2 + any**2 + anz**2
an = sqrt(an2)
anxy = sqrt(anx**2 + any**2)
anpl = (anv(1)*bnv(1) + anv(2)*bnv(2) + anv(3)*bnv(3))
anpl2= anpl**2
anpr = sqrt(an2 - anpl2)
dnl = one - anpl2
del0 = sqrt(dnl**2 + 4.0_wp_*anpl2/yg**2)
sngam = (anz*anpl - an2*bnv(3))/(an*anxy*anpr)
csgam = -(any*bnv(1) - anx*bnv(2))/ (anxy*anpr)
ff = 0.5_wp_*yg*(dnl - sox*del0)
ff2 = ff**2
den = ff2 + anpl2
if (den>zero) then
ext = (ff*csgam - ui*anpl*sngam)/sqrt(den)
eyt = (-ff*sngam - ui*anpl*csgam)/sqrt(den)
den = sqrt(abs(ext)**2+abs(eyt)**2)
ext = ext/den
eyt = eyt/den
else ! only for XM (sox=+1) when N//=0
ext = -ui*sngam
eyt = -ui*csgam
end if
! gam = atan2(sngam,csgam)/degree
end subroutine pol_limit
subroutine polarcold(anpl,anpr,xg,yg,sox,exf,eyif,ezf,elf,etf)
use const_and_precisions, only : wp_,zero,one
implicit none
! arguments
real(wp_), intent(in) :: anpl,anpr,xg,yg,sox
real(wp_), intent(out) :: exf,eyif,ezf,elf,etf
! local variables
real(wp_) :: anpl2,anpr2,an2,yg2,dy2,aa,e3,qq,p
if(xg <= zero) then
exf = zero
if(sox < zero) then
ezf = one
eyif = zero
else
ezf = zero
eyif = one
end if
elf = zero
etf = one
else
anpl2 = anpl**2
anpr2 = anpr**2
an2 = anpl2 + anpr2
yg2=yg**2
aa=1.0_wp_-xg-yg2
dy2 = one - yg2
qq = xg*yg/(an2*dy2 - aa)
if (anpl == zero) then
if(sox < zero) then
exf = zero
eyif = zero
ezf = one
else
qq = -aa/(xg*yg)
exf = one/sqrt(one + qq**2)
eyif = qq*exf
ezf = zero
end if
else
e3 = one - xg
p = (anpr2 - e3)/(anpl*anpr) ! undef for anpr==0
exf = p*ezf
eyif = qq*exf
ezf = one/sqrt(one + p**2*(one + qq**2))
end if
elf = (anpl*ezf + anpr*exf)/sqrt(an2)
etf = sqrt(one - elf**2)
end if
end subroutine polarcold
end module polarization