module polarization interface stokes module procedure stokes_ce,stokes_ell end interface contains subroutine stokes_ce(ext,eyt,qq,uu,vv) use const_and_precisions, only : wp_,two implicit none ! arguments complex(wp_), intent(in) :: ext,eyt real(wp_), intent(out) :: qq,uu,vv qq = abs(ext)**2 - abs(eyt)**2 uu = two* dble(ext*dconjg(eyt)) vv = two*dimag(ext*dconjg(eyt)) end subroutine stokes_ce subroutine stokes_ell(chi,psi,qq,uu,vv) use const_and_precisions, only : wp_,two implicit none ! arguments real(wp_), intent(in) :: chi,psi real(wp_), intent(out) :: qq,uu,vv qq=cos(two*chi)*cos(two*psi) uu=cos(two*chi)*sin(two*psi) vv=sin(two*chi) end subroutine stokes_ell subroutine polellipse(qq,uu,vv,psi,chi) use const_and_precisions, only : wp_,half implicit none ! arguments real(wp_), intent(in) :: qq,uu,vv real(wp_), intent(out) :: psi,chi ! real(wp_) :: ll,aa,bb,ell ! ll = sqrt(qq**2 + uu**2) ! aa = sqrt(half*(1 + ll)) ! bb = sqrt(half*(1 - ll)) ! ell = bb/aa psi = half*atan2(uu,qq) chi = half*asin(vv) end subroutine polellipse subroutine pol_limit(anv,bv,bres,sox,ext,eyt) !,gam) use const_and_precisions, only : wp_,ui=>im,zero,one implicit none ! arguments real(wp_), dimension(3), intent(in) :: anv,bv real(wp_), intent(in) :: bres integer, intent(in) :: sox complex(wp_), intent(out) :: ext,eyt ! real(wp_), optional, intent(out) :: gam ! local variables real(wp_), dimension(3) :: bnv real(wp_) :: anx,any,anz,an2,an,anpl2,anpl,anpr,anxy, & btot,yg,den,dnl,del0,ff,ff2,sngam,csgam ! btot = sqrt(bv(1)**2+bv(2)**2+bv(3)**2) bnv = bv/btot yg = btot/bres anx = anv(1) any = anv(2) anz = anv(3) an2 = anx**2 + any**2 + anz**2 an = sqrt(an2) anxy = sqrt(anx**2 + any**2) anpl = (anv(1)*bnv(1) + anv(2)*bnv(2) + anv(3)*bnv(3)) anpl2= anpl**2 anpr = sqrt(an2 - anpl2) dnl = one - anpl2 del0 = sqrt(dnl**2 + 4.0_wp_*anpl2/yg**2) sngam = (anz*anpl - an2*bnv(3))/(an*anxy*anpr) csgam = -(any*bnv(1) - anx*bnv(2))/ (anxy*anpr) ff = 0.5_wp_*yg*(dnl - sox*del0) ff2 = ff**2 den = ff2 + anpl2 if (den>zero) then ext = (ff*csgam - ui*anpl*sngam)/sqrt(den) eyt = (-ff*sngam - ui*anpl*csgam)/sqrt(den) den = sqrt(abs(ext)**2+abs(eyt)**2) ext = ext/den eyt = eyt/den else ! only for XM (sox=+1) when N//=0 ext = -ui*sngam eyt = -ui*csgam end if ! gam = atan2(sngam,csgam)/degree end subroutine pol_limit subroutine polarcold(anpl,anpr,xg,yg,sox,exf,eyif,ezf,elf,etf) use const_and_precisions, only : wp_,zero,one implicit none ! arguments real(wp_), intent(in) :: anpl,anpr,xg,yg,sox real(wp_), intent(out) :: exf,eyif,ezf,elf,etf ! local variables real(wp_) :: anpl2,anpr2,an2,yg2,dy2,aa,e3,qq,p if(xg <= zero) then exf = zero if(sox < zero) then ezf = one eyif = zero else ezf = zero eyif = one end if elf = zero etf = one else anpl2 = anpl**2 anpr2 = anpr**2 an2 = anpl2 + anpr2 yg2=yg**2 aa=1.0_wp_-xg-yg2 dy2 = one - yg2 qq = xg*yg/(an2*dy2 - aa) if (anpl == zero) then if(sox < zero) then exf = zero eyif = zero ezf = one else qq = -aa/(xg*yg) exf = one/sqrt(one + qq**2) eyif = qq*exf ezf = zero end if else e3 = one - xg p = (anpr2 - e3)/(anpl*anpr) ! undef for anpr==0 exf = p*ezf eyif = qq*exf ezf = one/sqrt(one + p**2*(one + qq**2)) end if elf = (anpl*ezf + anpr*exf)/sqrt(an2) etf = sqrt(one - elf**2) end if end subroutine polarcold end module polarization