gray/src/dispersion.f90
2015-06-12 14:53:29 +00:00

1332 lines
40 KiB
Fortran

module dispersion
!
use const_and_precisions, only : wp_,zero,one,im,czero,cunit,pi,sqrt_pi
implicit none
! local constants
integer, parameter :: npts=500
real(wp_), parameter :: tmax=5.0_wp_,dtex=2.0_wp_*tmax/dble(npts)
! variables
real(wp_), dimension(npts+1), save :: ttv,extv
!
contains
!
!
subroutine colddisp(xg,yg,npl,nprf,sox)
! solution cold dispersion relation
!
implicit none
! arguments
! xg = omegap^2/omega^2
! yg = omegac/omega
! npl = N parallel to B
! nprf = N perpendicular to B (cold)
! sox = mode (-1 => O mode, +1 => X mode)
real(wp_) :: xg,yg,npl,nprf,sox
! local variables
real(wp_) :: yg2,npl2,dnl,del,dxg
!
npl2=npl*npl
dnl=one-npl2
dxg=one-xg
yg2=yg*yg
del=sqrt(dnl*dnl+4.0_wp_*npl2*dxg/yg2)
nprf=sqrt(dxg-npl2-xg*yg2*(one+npl2+sox*del)/(dxg-yg2)/2.0_wp_)
!
end subroutine colddisp
!
!
!
subroutine harmnumber(yg,mu,npl,nhmin,nhmax,iwr)
! computation of minimum and maximum harmonic
!
implicit none
! local constants
! expcr = maximum value for mu*(gamma-1) above which the distribution function
! is considered to be 0
! eps = small number to have a correct rounding when ygnc/yg is an integer
real(wp_), parameter :: expcr=16.0_wp_,eps=1.e-8_wp_
! arguments
! yg = omegac/omega
! npl = parallel N
! mu = mc^2/Te
! nh = number of the armonic (min/max)
! iwr = weakly (iwr=1) or fully relativistic approximation
integer :: nhmin,nhmax,iwr
real(wp_) :: yg,npl,mu
! local variables
integer :: nh,nhc
real(wp_) :: ygc,ygn,npl2,gg,dnl,rdu2,argexp,uu2
!
nhmin=0
nhmax=0
npl2=npl**2
dnl=one-npl2
!
if(iwr.eq.1) then
ygc=max(one-0.5_wp_*npl2,zero)
else
ygc=sqrt(max(dnl,zero))
end if
nhc=int(ygc/yg)
if (nhc*yg<ygc) nhc=nhc+1
if(nhc.eq.0) return
!
do nh=nhc,nhc+10
ygn=nh*yg
!
if(iwr.eq.1) then
rdu2=2.0_wp_*(ygn-ygc)
! u1=npl+sqrt(rdu2)
! u2=npl-sqrt(rdu2)
! uu2=min(u1*u1,u2*u2) ! npl**2 + rdu2 - 2 * sqrt(npl2*rdu2)
uu2=npl2+rdu2-2.0_wp_*sqrt(npl2*rdu2) ! = (abs(npl)-sqrt(rdu2))**2
argexp=0.5_wp_*mu*uu2
else
rdu2=ygn**2-ygc**2
! g1=(ygn+npl*sqrt(rdu2))/dnl
! g2=(ygn-npl*sqrt(rdu2))/dnl
! gg=min(g1,g2)
gg=(ygn-sqrt(npl2*rdu2))/dnl
argexp=mu*(gg-one)
end if
if(argexp.le.expcr) then
if (nhmin.eq.0) nhmin=nh
nhmax=nh
else
if (nhmin.gt.0) exit
end if
!
end do
!
end subroutine harmnumber
!
!
!
subroutine warmdisp(xg,yg,mu,npl,nprf,sox,lrm,err,nprr,npri,fast,imx,ex,ey,ez)
implicit none
! arguments
integer :: lrm,err,fast,imx
real(wp_) :: xg,yg,mu,npl,nprf,sox,nprr,npri
complex(wp_) :: ex,ey,ez,den
! local variables
integer :: i,j,k,imxx,ilrm
real(wp_) :: errnpr,npl2,s,cr,ci,ez2,ey2,ex2,enx2
complex(wp_) :: cc0,cc2,cc4,discr,npra2,npra,npr,npr2,e330, &
e11,e22,e12,e13,e23,a13,a31,a23,a32,a33
complex(wp_) :: epsl(3,3,lrm),sepsl(3,3)
!
err=0
errnpr=one
npra2=nprf**2
npl2=npl*npl
imxx=abs(imx)
!
if (fast.eq.1) then
call diel_tens_wr(xg,yg,mu,npl,e330,epsl,lrm)
else
call diel_tens_fr(xg,yg,mu,npl,e330,cr,ci,epsl,lrm,fast)
end if
!
do
do i=1,imxx
!
do j=1,3
do k=1,3
sepsl(k,j)=czero
do ilrm=1,lrm
sepsl(k,j)=sepsl(k,j)+epsl(k,j,ilrm)*npra2**(ilrm-1)
end do
end do
end do
!
npra=sqrt(npra2)
!
e11=sepsl(1,1)
e22=sepsl(2,2)
e12=sepsl(1,2)
a33=sepsl(3,3)
a13=sepsl(1,3)
a23=sepsl(2,3)
a31=a13
a32=-a23
! e33=e330+npra2*a33
e13=npra*a13
e23=npra*a23
! e21=-e12
! e31=e13
! e32=-e23
!
! if(i.gt.2.and.errnpr.lt.1.0e-3_wp_) exit
!
cc4=(e11-npl2)*(one-a33)+(a13+npl)*(a31+npl)
cc2=-e12*e12*(one-a33)-a32*e12*(a13+npl)+a23*e12*(a31+npl) &
-(a23*a32+e330+(e22-npl2)*(one-a33))*(e11-npl2) &
-(a13+npl)*(a31+npl)*(e22-npl2)
cc0=e330*((e11-npl2)*(e22-npl2)+e12*e12)
!
discr=cc2*cc2-4.0_wp_*cc0*cc4
!
if(yg.gt.one) then
s=sox
if(dimag(discr).LE.zero) s=-s
else
s=-sox
if(dble(discr).le.zero.and.dimag(discr).ge.zero) s=-s
end if
!
npr2=(-cc2+s*sqrt(discr))/(2.0_wp_*cc4)
!
errnpr=abs(one-abs(npr2)/abs(npra2))
if(i.gt.1.and.errnpr.lt.1.0e-5_wp_) exit
npra2=npr2
end do
if(i.gt.imxx.and.imxx.gt.1) then
if (imx.lt.0) then
write(*,"(' X =',f7.4,' Y =',f10.7,' Nperp =',f7.4,': convergence &
&disabled.',e12.5)") xg,yg,sqrt(abs(npr2)),npl
imxx=1
else
write(*,"(' X =',f7.4,' Y =',f10.7,' Nperp =',f7.4,': convergence &
&failed.',e12.5)") xg,yg,sqrt(abs(npr2)),npl
exit
end if
else
exit
end if
print*,yg,imx,imxx
end do
!
! if(i.gt.imx) print*,' i>imx ',yg,errnpr,i
!
if(sqrt(dble(npr2)).lt.zero.or.npr2.ne.npr2.or.abs(npr2).eq.huge(one).or. &
abs(npr2).le.tiny(one)) then
write(*,"(' X =',f7.4,' Y =',f7.4,' Nperp =',f7.4,'!')") xg,yg,sqrt(abs(npr2))
npr2=czero
end if
! if(dble(npr2).lt.zero) then
! npr2=zero
! print*,' Y =',yg,' npr2 < 0'
! err=99
! end if
!
! write(11,99) yg,dble(npr2),dimag(npr2),nprf**2,dble(i)
!
npr=sqrt(npr2)
nprr=dble(npr)
npri=dimag(npr)
!
ex=czero
ey=czero
ez=czero
!
if (abs(npl).gt.1.0e-6_wp_) then
den=e12*e23-(e13+npr*npl)*(e22-npr2-npl2)
ey=-(e12*(e13+npr*npl)+(e11-npl2)*e23)/den
ez=(e12*e12+(e22-npr2-npl2)*(e11-npl2))/den
ez2=abs(ez)**2
ey2=abs(ey)**2
enx2=one/(one+ey2+ez2)
ex=dcmplx(sqrt(enx2),zero)
ez2=ez2*enx2
ey2=ey2*enx2
ez=ez*ex
ey=ey*ex
else
if(sox.lt.zero) then
ez=cunit
ez2=abs(ez)**2
else
ex2=one/(one+abs(-e11/e12)**2)
ex=sqrt(ex2)
ey=-ex*e11/e12
ey2=abs(ey)**2
ez2=zero
end if
end if
!
end subroutine warmdisp
!
!
!
subroutine diel_tens_fr(xg,yg,mu,npl,e330,cr,ci,epsl,lrm,fast)
! Fully relativistic case computation of dielectric tensor elements
! up to third order in Larmor radius for hermitian part
!
use math, only : fact
implicit none
! arguments
integer :: lrm,fast
real(wp_) :: xg,yg,mu,npl,cr,ci
complex(wp_) :: e330
complex(wp_), dimension(3,3,lrm) :: epsl
! local variables
integer :: i,j,l,is,k,lm
real(wp_) :: npl2,dnl,w,asl,bsl,cmxw,fal
real(wp_), dimension(-lrm:lrm,0:2,0:lrm) :: rr
real(wp_), dimension(lrm,0:2,lrm) :: ri
complex(wp_) :: ca11,ca12,ca22,ca13,ca23,ca33,cq0p,cq0m,cq1p,cq1m,cq2p
!
npl2=npl**2
dnl=one-npl2
!
cmxw=one+15.0_wp_/(8.0_wp_*mu)+105.0_wp_/(128.0_wp_*mu**2)
cr=-mu*mu/(sqrt_pi*cmxw)
ci=sqrt(2.0_wp_*pi*mu)*mu**2/cmxw
!
do l=1,lrm
do j=1,3
do i=1,3
epsl(i,j,l)=czero
end do
end do
end do
!
select case(fast)
case(2:3)
call hermitian(rr,yg,mu,npl,cr,fast,lrm)
case(4:)
call hermitian_2(rr,yg,mu,npl,cr,fast,lrm)
case default
write(*,*) "unexpected value for flag 'fast' in dispersion:", fast
end select
!
call antihermitian(ri,yg,mu,npl,ci,lrm)
!
do l=1,lrm
lm=l-1
fal=-0.25_wp_**l*fact(2*l)/(fact(l)**2*yg**(2*lm))
ca11=czero
ca12=czero
ca13=czero
ca22=czero
ca23=czero
ca33=czero
do is=0,l
k=l-is
w=(-one)**k
!
asl=w/(fact(is+l)*fact(l-is))
bsl=asl*(is*is+dble(2*k*lm*(l+is))/(2.0_wp_*l-one))
!
if(is.gt.0) then
cq0p=rr(is,0,l)+rr(-is,0,l)+im*ri(is,0,l)
cq0m=rr(is,0,l)-rr(-is,0,l)+im*ri(is,0,l)
cq1p=rr(is,1,l)+rr(-is,1,l)+im*ri(is,1,l)
cq1m=rr(is,1,l)-rr(-is,1,l)+im*ri(is,1,l)
cq2p=rr(is,2,l)+rr(-is,2,l)+im*ri(is,2,l)
else
cq0p=rr(is,0,l)
cq0m=rr(is,0,l)
cq1p=rr(is,1,l)
cq1m=rr(is,1,l)
cq2p=rr(is,2,l)
end if
!
ca11=ca11+is**2*asl*cq0p
ca12=ca12+is*l*asl*cq0m
ca22=ca22+bsl*cq0p
ca13=ca13+is*asl*cq1m/yg
ca23=ca23+l*asl*cq1p/yg
ca33=ca33+asl*cq2p/yg**2
end do
epsl(1,1,l) = - xg*ca11*fal
epsl(1,2,l) = + im*xg*ca12*fal
epsl(2,2,l) = - xg*ca22*fal
epsl(1,3,l) = - xg*ca13*fal
epsl(2,3,l) = - im*xg*ca23*fal
epsl(3,3,l) = - xg*ca33*fal
end do
!
cq2p=rr(0,2,0)
e330=one+xg*cq2p
!
epsl(1,1,1) = one + epsl(1,1,1)
epsl(2,2,1) = one + epsl(2,2,1)
!
do l=1,lrm
epsl(2,1,l) = - epsl(1,2,l)
epsl(3,1,l) = epsl(1,3,l)
epsl(3,2,l) = - epsl(2,3,l)
end do
!
end subroutine diel_tens_fr
!
!
!
subroutine hermitian(rr,yg,mu,npl,cr,fast,lrm)
use eierf, only : calcei3
implicit none
! arguments
integer :: lrm,fast
real(wp_) :: yg,mu,npl,cr
real(wp_), dimension(-lrm:lrm,0:2,0:lrm) :: rr
! local variables
integer :: i,k,n,n1,nn,m,llm
real(wp_) :: mu2,mu4,mu6,npl2,npl4,bth,bth2,bth4,bth6,t,rxt,upl2, &
upl,gx,exdx,x,gr,s,zm,zm2,zm3,fe0m,ffe,sy1,sy2,sy3
!
do n=-lrm,lrm
do k=0,2
do m=0,lrm
rr(n,k,m)=zero
end do
end do
end do
!
llm=min(3,lrm)
!
bth2=2.0_wp_/mu
bth=sqrt(bth2)
mu2=mu*mu
mu4=mu2*mu2
mu6=mu4*mu2
!
do i = 1, npts+1
t = ttv(i)
rxt=sqrt(one+t*t/(2.0_wp_*mu))
x = t*rxt
upl2=bth2*x**2
upl=bth*x
gx=one+t*t/mu
exdx=cr*extv(i)*gx/rxt*dtex
!
n1=1
if(fast.gt.2) n1=-llm
!
do n=n1,llm
nn=abs(n)
gr=npl*upl+n*yg
zm=-mu*(gx-gr)
s=mu*(gx+gr)
zm2=zm*zm
zm3=zm2*zm
call calcei3(zm,fe0m)
!
do m=nn,llm
if(n.eq.0.and.m.eq.0) then
rr(0,2,0) = rr(0,2,0) - exdx*fe0m*upl2
else
if (m.eq.1) then
ffe=(one+s*(one-zm*fe0m))/mu2
else if (m.eq.2) then
ffe=(6.0_wp_-2.0_wp_*zm+4.0_wp_*s+s*s*(one+zm-zm2*fe0m))/mu4
else
ffe=(18.0_wp_*s*(s+4.0_wp_-zm)+6.0_wp_* &
(20.0_wp_-8.0_wp_*zm+zm2)+s**3*(2.0_wp_+zm+zm2-zm3*fe0m))/mu6
end if
!
rr(n,0,m) = rr(n,0,m) + exdx*ffe
rr(n,1,m) = rr(n,1,m) + exdx*ffe*upl
rr(n,2,m) = rr(n,2,m) + exdx*ffe*upl2
!
end if
!
end do
end do
end do
!
if(fast.gt.2) return
!
sy1=one+yg
sy2=one+yg*2.0_wp_
sy3=one+yg*3.0_wp_
!
bth4=bth2*bth2
bth6=bth4*bth2
!
npl2=npl*npl
npl4=npl2*npl2
!
rr(0,2,0) = -(one+bth2*(-1.25_wp_+1.5_wp_*npl2) &
+bth4*(1.71875_wp_-6.0_wp_*npl2+3.75_wp_*npl2*npl2) &
+bth6*3.0_wp_*(-65.0_wp_+456.0_wp_*npl2-660.0_wp_*npl4 &
+280.0_wp_*npl2*npl4)/64.0_wp_+bth6*bth2*15.0_wp_ &
*(252.853e3_wp_-2850.816e3_wp_*npl2+6942.720e3_wp_*npl4 &
-6422.528e3_wp_*npl4*npl2+2064.384e3_wp_*npl4*npl4) &
/524.288e3_wp_)
rr(0,1,1) = -npl*bth2*(one+bth2*(-2.25_wp_+1.5_wp_*npl2) &
+bth4*9.375e-2_wp_*(6.1e1_wp_-9.6e1_wp_*npl2+4.e1_wp_*npl4 &
+bth2*(-184.5_wp_+4.92e2_wp_*npl2-4.5e2_wp_*npl4 &
+1.4e2_wp_*npl2*npl4)))
rr(0,2,1) = -bth2*(one+bth2*(-0.5_wp_+1.5_wp_*npl2)+0.375_wp_*bth4 &
*(3.0_wp_-15.0_wp_*npl2+10.0_wp_*npl4)+3.0_wp_*bth6 &
*(-61.0_wp_+471.0_wp_*npl2-680*npl4+280.0_wp_*npl2*npl4) &
/64.0_wp_)
rr(-1,0,1) = -2.0_wp_/sy1*(one+bth2/sy1*(-1.25_wp_+0.5_wp_*npl2/sy1) &
+bth4/sy1*(-0.46875_wp_+(2.1875_wp_+0.625_wp_*npl2)/sy1 &
-2.625_wp_*npl2/sy1**2+0.75_wp_*npl4/sy1**3)+bth6/sy1 &
*(0.234375_wp_+(1.640625_wp_+0.234375_wp_*npl2)/sy1 &
+(-4.921875_wp_-4.921875_wp_*npl2)/sy1**2 &
+2.25_wp_*npl2*(5.25_wp_+npl2)/sy1**3 - 8.4375_wp_*npl4/sy1**4 &
+1.875_wp_*npl2*npl4/sy1**5)+bth6*bth2/sy1*(0.019826889038*sy1 &
-0.06591796875_wp_+(-0.7177734375_wp_ - 0.1171875_wp_*npl2)/sy1 &
+(-5.537109375_wp_ - 2.4609375_wp_*npl2)/sy1**2 &
+(13.53515625_wp_ + 29.53125_wp_*npl2 + 2.8125_wp_*npl4)/sy1**3 &
+(-54.140625_wp_*npl2 - 32.6953125_wp_*npl4)/sy1**4 &
+(69.609375_wp_*npl4 + 9.84375_wp_*npl2*npl4)/sy1**5 &
-36.09375_wp_*npl2*npl4/sy1**6 + 6.5625_wp_*npl4**2/sy1**7))
rr(-1,1,1) = -npl*bth2/sy1**2*(one+bth2*(1.25_wp_-3.5_wp_/sy1 &
+1.5_wp_*npl2/sy1**2)+bth4*9.375e-2_wp_*((5.0_wp_-7.e1_wp_/sy1 &
+(126.0_wp_+48.0_wp_*npl2)/sy1**2-144.0_wp_*npl2/sy1**3 &
+4.e1_wp_*npl4/sy1**4)+bth2*(-2.5_wp_-3.5e1_wp_/sy1+(3.15e2_wp_ &
+6.e1_wp_*npl2)/sy1**2+(-4.62e2_wp_-5.58e2_wp_*npl2)/sy1**3 &
+(9.9e2_wp_*npl2+2.1e2_wp_*npl4)/sy1**4-6.6e2_wp_*npl4/sy1**5+ &
1.4e2_wp_*npl4*npl2/sy1**6)))
rr(-1,2,1) = -bth2/sy1*(one+bth2*(1.25_wp_-1.75_wp_/sy1+1.5_wp_*npl2/sy1**2) &
+bth4*3.0_wp_/32.0_wp_*(5.0_wp_-35.0_wp_/sy1 &
+(42.0_wp_+48.0_wp_*npl2)/sy1**2-108.0_wp_*npl2/sy1**3 &
+40.0_wp_*npl4/sy1**4+0.5_wp_*bth2*(-5.0_wp_-35.0_wp_/sy1 &
+(21.e1_wp_+12.e1_wp_*npl2)/sy1**2-(231.0_wp_+837.0_wp_*npl2) &
/sy1**3+12.0_wp_*npl2*(99.0_wp_+35.0_wp_*npl2)/sy1**4 &
-1100.0_wp_*npl4/sy1**5 + 280.0_wp_*npl2*npl4/sy1**6)))
!
if(llm.gt.1) then
!
rr(0,0,2) = -4.0_wp_*bth2*(one+bth2*(-0.5_wp_+0.5_wp_*npl2)+bth4 &
*(1.125_wp_-1.875_wp_*npl2+0.75_wp_*npl4)+bth6*3.0_wp_ &
*(-61.0_wp_+157.0_wp_*npl2-136.0_wp_*npl4+40.0_wp_*npl2*npl4) &
/64.0_wp_)
rr(0,1,2) = -2.0_wp_*npl*bth4*(one+bth2*(-1.5_wp_+1.5_wp_*npl2)+bth4 &
*(39.0_wp_-69.0_wp_*npl2+30.0_wp_*npl4)/8.0_wp_)
rr(0,2,2) = -2.0_wp_*bth4*(one+bth2*(0.75_wp_+1.5_wp_*npl2)+bth4* &
(13.0_wp_-48.0_wp_*npl2 +40.0_wp_*npl4)*3.0_wp_/32.0_wp_)
rr(-1,0,2) = -4.0_wp_*bth2/sy1*(one+bth2* &
(1.25_wp_-1.75_wp_/sy1+0.5_wp_*npl2/sy1**2)+bth4* &
(0.46875_wp_-3.28125_wp_/sy1+(3.9375_wp_+1.5_wp_*npl2)/sy1**2 &
-3.375_wp_*npl2/sy1**3+0.75_wp_*npl4/sy1**4) &
+bth4*bth2*3.0_wp_/64.0_wp_*(-5.0_wp_-35.0_wp_/sy1 &
+(210.0_wp_+40.0_wp_*npl2)/sy1**2-3.0_wp_* &
(77.0_wp_+93.0_wp_*npl2)/sy1**3+(396.0*npl2+84.0_wp_*npl4) &
/sy1**4-220.0_wp_*npl4/sy1**5+40.0_wp_*npl4*npl2/sy1**6))
rr(-1,1,2) = -2.0_wp_*bth4*npl/sy1**2*(one+bth2 &
*(3.0_wp_-4.5_wp_/sy1+1.5_wp_*npl2/sy1**2)+bth4 &
*(20.0_wp_-93.0_wp_/sy1+(99.0_wp_+42.0_wp_*npl2)/sy1**2 &
-88.0_wp_*npl2/sy1**3+20.0_wp_*npl4/sy1**4)*3.0_wp_/16.0_wp_)
rr(-1,2,2) = -2.0_wp_*bth4/sy1*(one+bth2 &
*(3.0_wp_-2.25_wp_/sy1+1.5_wp_*npl2/sy1**2)+bth4 &
*(40.0_wp_*npl4/sy1**4-132.0_wp_*npl2/sy1**3 &
+(66.0_wp_+84.0_wp_*npl2)/sy1**2-93.0_wp_/sy1+40.0_wp_) &
*3.0_wp_/32.0_wp_)
rr(-2,0,2) = -4.0_wp_*bth2/sy2*(one+bth2 &
*(1.25_wp_-1.75_wp_/sy2+0.5_wp_*npl2/sy2**2)+bth4 &
*(0.46875_wp_-3.28125_wp_/sy2+(3.9375_wp_+1.5_wp_*npl2) &
/sy2**2-3.375_wp_*npl2/sy2**3+0.75_wp_*npl4/sy2**4)+bth4*bth2 &
*3.0_wp_/64.0_wp_*(-5.0_wp_-35.0_wp_/sy2 &
+(210.0_wp_+40.0_wp_*npl2)/sy2**2-3.0_wp_ &
*(77.0_wp_+93.0_wp_*npl2)/sy2**3 &
+(396.0*npl2+84.0_wp_*npl4)/sy2**4-220.0_wp_*npl4/sy2**5 &
+40.0_wp_*npl4*npl2/sy2**6))
rr(-2,1,2) =-2.0_wp_*bth4*npl/sy2**2*(one+bth2 &
*(3.0_wp_-4.5_wp_/sy2+1.5_wp_*npl2/sy2**2)+bth4 &
*(20.0_wp_-93.0_wp_/sy2+(99.0_wp_+42.0_wp_*npl2)/sy2**2 &
-88.0_wp_*npl2/sy2**3+20.0_wp_*npl4/sy2**4)*3.0_wp_/16.0_wp_)
rr(-2,2,2) = -2.0_wp_*bth4/sy2*(one+bth2 &
*(3.0_wp_-2.25_wp_/sy2+1.5_wp_*npl2/sy2**2)+bth4 &
*(40.0_wp_*npl4/sy2**4-132.0_wp_*npl2/sy2**3 &
+(66.0_wp_+84.0_wp_*npl2)/sy2**2-93.0_wp_/sy2+40.0_wp_) &
*3.0_wp_/32.0_wp_)
!
if(llm.gt.2) then
!
rr(0,0,3) = -12.0_wp_*bth4*(one+bth2*(0.75_wp_+0.5_wp_*npl2)+bth4 &
*(1.21875_wp_-1.5_wp_*npl2+0.75_wp_*npl2*npl2))
rr(0,1,3) = -6.0_wp_*npl*bth6*(1+bth2*(-0.25_wp_+1.5_wp_*npl2))
rr(0,2,3) = -6.0_wp_*bth6*(one+bth2*(2.5_wp_+1.5_wp_*npl2))
rr(-1,0,3) = -12.0_wp_*bth4/sy1*(one+bth2 &
*(3.0_wp_-2.25_wp_/sy1+0.5_wp_*npl2/sy1**2)+bth4 &
*(3.75_wp_-8.71875_wp_/sy1+(6.1875_wp_+2.625_wp_*npl2) &
/sy1**2-4.125_wp_*npl2/sy1**3+0.75*npl2*npl2/sy1**4))
rr(-1,1,3) = -6.0_wp_*npl*bth6/sy1**2* &
(one+bth2*(5.25_wp_-5.5_wp_/sy1+1.5_wp_*npl2/sy1**2))
rr(-1,2,3) = -6.0_wp_*bth6/sy1* &
(one+bth2*(5.25_wp_-2.75_wp_/sy1+1.5_wp_*npl2/sy1**2))
!
rr(-2,0,3) = -12.0_wp_*bth4/sy2 &
*(one+bth2*(3.0_wp_-2.25_wp_/sy2+0.5_wp_*npl2/sy2**2) &
+bth4*(3.75_wp_-8.71875_wp_/sy2+(6.1875_wp_+2.625_wp_*npl2) &
/sy2**2-4.125_wp_*npl2/sy2**3+0.75*npl2*npl2/sy2**4))
rr(-2,1,3) = -6.0_wp_*npl*bth6/sy2**2 &
*(one+bth2*(5.25_wp_-5.5_wp_/sy2+1.5_wp_*npl2/sy2**2))
rr(-2,2,3) = -6.0_wp_*bth6/sy2 &
*(one+bth2*(5.25_wp_-2.75_wp_/sy2+1.5_wp_*npl2/sy2**2))
!
rr(-3,0,3) = -12.0_wp_*bth4/sy3 &
*(one+bth2*(3.0_wp_-2.25_wp_/sy3+0.5_wp_*npl2/sy3**2) &
+bth4*(3.75_wp_-8.71875_wp_/sy3+(6.1875_wp_+2.625_wp_*npl2) &
/sy3**2-4.125_wp_*npl2/sy3**3+0.75*npl2*npl2/sy3**4))
rr(-3,1,3) = -6.0_wp_*npl*bth6/sy3**2 &
*(one+bth2*(5.25_wp_-5.5_wp_/sy3+1.5_wp_*npl2/sy3**2))
rr(-3,2,3) = -6.0_wp_*bth6/sy3 &
*(one+bth2*(5.25_wp_-2.75_wp_/sy3+1.5_wp_*npl2/sy3**2))
!
end if
end if
!
end subroutine hermitian
!
!
!
subroutine hermitian_2(rr,yg,mu,npl,cr,fast,lrm)
use quadpack, only : dqagsmv !dqagimv
implicit none
! local constants
integer,parameter :: lw=5000,liw=lw/4,npar=7
real(wp_), parameter :: epsa=zero,epsr=1.0e-4_wp_
! arguments
integer :: lrm,fast
real(wp_) :: yg,mu,npl,cr
real(wp_), dimension(-lrm:lrm,0:2,0:lrm) :: rr
! local variables
integer :: n,m,ih,k,n1,nn,llm,neval,ier,last,ihmin
integer, dimension(liw) :: iw
real(wp_) :: mu2,mu4,mu6,npl2,bth,bth2,bth4,bth6
real(wp_) :: sy1,sy2,sy3,resfh,epp
real(wp_), dimension(lw) :: w
real(wp_), dimension(npar) :: apar
!
do n=-lrm,lrm
do k=0,2
do m=0,lrm
rr(n,k,m)=zero
end do
end do
end do
!
llm=min(3,lrm)
!
bth2=2.0_wp_/mu
bth=sqrt(bth2)
mu2=mu*mu
mu4=mu2*mu2
mu6=mu4*mu2
!
n1=1
if(fast.gt.10) n1=-llm
!
apar(1) = yg
apar(2) = mu
apar(3) = npl
apar(4) = cr
!
do n=n1,llm
nn=abs(n)
apar(5) = real(n,wp_)
do m=nn,llm
apar(6) = real(m,wp_)
ihmin=0
if(n.eq.0.and.m.eq.0) ihmin=2
do ih=ihmin,2
apar(7) = real(ih,wp_)
! call dqagimv(fhermit,bound,2,apar,npar,epsa,epsr,resfh,
call dqagsmv(fhermit,-tmax,tmax,apar,npar,epsa,epsr,resfh, &
epp,neval,ier,liw,lw,last,iw,w)
rr(n,ih,m) = resfh
end do
end do
end do
if(fast.gt.10) return
!
sy1=one+yg
sy2=one+yg*2.0_wp_
sy3=one+yg*3.0_wp_
!
bth4=bth2*bth2
bth6=bth4*bth2
!
npl2=npl*npl
!
rr(0,2,0) = -(one+bth2*(-1.25_wp_+1.5_wp_*npl2) &
+bth4*(1.71875_wp_-6.0_wp_*npl2+3.75_wp_*npl2*npl2))
rr(0,1,1) = -npl*bth2*(one+bth2*(-2.25_wp_+1.5_wp_*npl2))
rr(0,2,1) = -bth2*(one+bth2*(-0.5_wp_+1.5_wp_*npl2))
rr(-1,0,1) = -2.0_wp_/sy1*(one+bth2/sy1*(-1.25_wp_+0.5_wp_*npl2 &
/sy1)+bth4/sy1*(-0.46875_wp_+(2.1875_wp_+0.625_wp_*npl2) &
/sy1-2.625_wp_*npl2/sy1**2+0.75_wp_*npl2*npl2/sy1**3))
rr(-1,1,1) = -npl*bth2/sy1**2*(one+bth2*(1.25_wp_-3.5_wp_/sy1 &
+1.5_wp_*npl2/sy1**2))
rr(-1,2,1) = -bth2/sy1*(one+bth2*(1.25_wp_-1.75_wp_/sy1+1.5_wp_ &
*npl2/sy1**2))
!
if(llm.gt.1) then
!
rr(0,0,2) = -4.0_wp_*bth2*(one+bth2*(-0.5_wp_+0.5_wp_*npl2) &
+bth4*(1.125_wp_-1.875_wp_*npl2+0.75_wp_*npl2*npl2))
rr(0,1,2) = -2.0_wp_*npl*bth4*(one+bth2*(-1.5_wp_+1.5_wp_*npl2))
rr(0,2,2) = -2.0_wp_*bth4*(one+bth2*(0.75_wp_+1.5_wp_*npl2))
rr(-1,0,2) = -4.0_wp_*bth2/sy1*(one+bth2 &
*(1.25_wp_-1.75_wp_/sy1+0.5_wp_*npl2/sy1**2)+bth4 &
*(0.46875_wp_-3.28125_wp_/sy1+(3.9375_wp_+1.5_wp_*npl2) &
/sy1**2-3.375_wp_*npl2/sy1**3+0.75_wp_*npl2*npl2/sy1**4))
rr(-1,1,2) = -2.0_wp_*bth4*npl/sy1**2*(one+bth2 &
*(3.0_wp_-4.5_wp_/sy1+1.5_wp_*npl2/sy1**2))
rr(-1,2,2) = -2.0_wp_*bth4/sy1*(one+bth2 &
*(3.0_wp_-2.25_wp_/sy1+1.5_wp_*npl2/sy1**2))
rr(-2,0,2) = -4.0_wp_*bth2/sy2*(one+bth2 &
*(1.25_wp_-1.75_wp_/sy2+0.5_wp_*npl2/sy2**2)+bth4 &
*(0.46875_wp_-3.28125_wp_/sy2+(3.9375_wp_+1.5_wp_*npl2) &
/sy2**2-3.375_wp_*npl2/sy2**3+0.75_wp_*npl2*npl2/sy2**4))
rr(-2,1,2) = -2.0_wp_*bth4*npl/sy2**2*(one+bth2 &
*(3.0_wp_-4.5_wp_/sy2+1.5_wp_*npl2/sy2**2))
rr(-2,2,2) = -2.0_wp_*bth4/sy2*(one+bth2 &
*(3.0_wp_-2.25_wp_/sy2+1.5_wp_*npl2/sy2**2))
!
if(llm.gt.2) then
!
rr(0,0,3) = -12.0_wp_*bth4*(1+bth2*(0.75_wp_+0.5_wp_*npl2)+bth4 &
*(1.21875_wp_-1.5_wp_*npl2+0.75_wp_*npl2*npl2))
rr(0,1,3) = -6.0_wp_*npl*bth6*(1+bth2*(-0.25_wp_+1.5_wp_*npl2))
rr(0,2,3) = -6.0_wp_*bth6*(1+bth2*(2.5_wp_+1.5_wp_*npl2))
rr(-1,0,3) = -12.0_wp_*bth4/sy1 &
*(one+bth2*(3.0_wp_-2.25_wp_/sy1+0.5_wp_*npl2/sy1**2) &
+bth4*(3.75_wp_-8.71875_wp_/sy1 &
+(6.1875_wp_+2.625_wp_*npl2)/sy1**2 &
-4.125_wp_*npl2/sy1**3+0.75_wp_*npl2*npl2/sy1**4))
rr(-1,1,3) = -6.0_wp_*npl*bth6/sy1**2 &
*(one+bth2*(5.25_wp_-5.5_wp_/sy1+1.5_wp_*npl2/sy1**2))
rr(-1,2,3) = -6.0_wp_*bth6/sy1 &
*(one+bth2*(5.25_wp_-2.75_wp_/sy1+1.5_wp_*npl2/sy1**2))
!
rr(-2,0,3) = -12.0_wp_*bth4/sy2 &
*(one+bth2*(3.0_wp_-2.25_wp_/sy2+0.5_wp_*npl2/sy2**2) &
+bth4*(3.75_wp_-8.71875_wp_/sy2 &
+(6.1875_wp_+2.625_wp_*npl2)/sy2**2 &
-4.125_wp_*npl2/sy2**3+0.75_wp_*npl2*npl2/sy2**4))
rr(-2,1,3) = -6.0_wp_*npl*bth6/sy2**2 &
*(one+bth2*(5.25_wp_-5.5_wp_/sy2+1.5_wp_*npl2/sy2**2))
rr(-2,2,3) = -6.0_wp_*bth6/sy2 &
*(one+bth2*(5.25_wp_-2.75_wp_/sy2+1.5_wp_*npl2/sy2**2))
!
rr(-3,0,3) = -12.0_wp_*bth4/sy3 &
*(one+bth2*(3.0_wp_-2.25_wp_/sy3+0.5_wp_*npl2/sy3**2) &
+bth4*(3.75_wp_-8.71875_wp_/sy3 &
+(6.1875_wp_+2.625_wp_*npl2)/sy3**2 &
-4.125_wp_*npl2/sy3**3+0.75_wp_*npl2*npl2/sy3**4))
rr(-3,1,3) = -6.0_wp_*npl*bth6/sy3**2 &
*(one+bth2*(5.25_wp_-5.5_wp_/sy3+1.5_wp_*npl2/sy3**2))
rr(-3,2,3) = -6.0_wp_*bth6/sy3 &
*(one+bth2*(5.25_wp_-2.75_wp_/sy3+1.5_wp_*npl2/sy3**2))
!
end if
end if
!
end subroutine hermitian_2
!
!
!
function fhermit(t,apar,npar)
use eierf, only : calcei3
implicit none
! arguments
integer, intent(in) :: npar
real(wp_), intent(in) :: t
real(wp_), dimension(npar), intent(in) :: apar
! local variables
integer :: n,m,ih
real(wp_) :: yg,mu,npl,cr,mu2,mu4,mu6,bth,bth2,rxt,x,upl2, &
upl,gx,exdxdt,gr,zm,s,zm2,zm3,fe0m,ffe,uplh
! external functions/subroutines
real(wp_) :: fhermit
!
yg = apar(1)
mu = apar(2)
npl = apar(3)
cr = apar(4)
n = int(apar(5))
m = int(apar(6))
ih = int(apar(7))
!
bth2=2.0_wp_/mu
bth=sqrt(bth2)
mu2=mu*mu
mu4=mu2*mu2
mu6=mu4*mu2
!
rxt=sqrt(one+t*t/(2.0_wp_*mu))
x = t*rxt
upl2=bth2*x**2
upl=bth*x
gx=one+t*t/mu
exdxdt=cr*exp(-t*t)*gx/rxt
gr=npl*upl+n*yg
zm=-mu*(gx-gr)
s=mu*(gx+gr)
zm2=zm*zm
zm3=zm2*zm
call calcei3(zm,fe0m)
ffe=zero
uplh=upl**ih
if(n.eq.0.and.m.eq.0) ffe=exdxdt*fe0m*upl2
if(m.eq.1) ffe=(one+s*(one-zm*fe0m))*uplh/mu2
if(m.eq.2) ffe=(6.0_wp_-2.0_wp_*zm+4.0_wp_*s+s*s*(one+zm-zm2*fe0m))*uplh/mu4
if(m.eq.3) ffe=(18.0_wp_*s*(s+4.0_wp_-zm)+6.0_wp_*(20.0_wp_-8.0_wp_*zm+zm2) &
+s**3*(2.0_wp_+zm+zm2-zm3*fe0m))*uplh/mu6
fhermit= exdxdt*ffe
!
end function fhermit
!
!
!
subroutine antihermitian(ri,yg,mu,npl,ci,lrm)
use math, only : fact
implicit none
! local constants
integer, parameter :: lmx=20,nmx=lmx+2
! arguments
integer :: lrm
real(wp_) :: yg,mu,npl,ci
real(wp_) :: ri(lrm,0:2,lrm)
! local variables
integer :: n,k,m,mm
real(wp_) :: cmu,npl2,dnl,ygn,rdu2,rdu,du,ub,aa,up,um,gp,gm,xp,xm, &
eep,eem,ee,cm,cim,fi0p0,fi1p0,fi2p0,fi0m0,fi1m0,fi2m0, &
fi0p1,fi1p1,fi2p1,fi0m1,fi1m1,fi2m1,fi0m,fi1m,fi2m
real(wp_), dimension(nmx) :: fsbi
!
do n=1,lrm
do k=0,2
do m=1,lrm
ri(n,k,m)=zero
end do
end do
end do
!
npl2=npl*npl
dnl=one-npl2
cmu=npl*mu
!
do n=1,lrm
ygn=n*yg
rdu2=ygn**2-dnl
if(rdu2.gt.zero) then
rdu=sqrt(rdu2)
du=rdu/dnl
ub=npl*ygn/dnl
aa=mu*npl*du
if (abs(aa).gt.5.0_wp_) then
up=ub+du
um=ub-du
gp=npl*up+ygn
gm=npl*um+ygn
xp=up+one/cmu
xm=um+one/cmu
eem=exp(-mu*(gm-one))
eep=exp(-mu*(gp-one))
fi0p0=-one/cmu
fi1p0=-xp/cmu
fi2p0=-(one/cmu**2+xp*xp)/cmu
fi0m0=-one/cmu
fi1m0=-xm/cmu
fi2m0=-(one/cmu**2+xm*xm)/cmu
do m=1,lrm
fi0p1=-2.0_wp_*m*(fi1p0-ub*fi0p0)/cmu
fi0m1=-2.0_wp_*m*(fi1m0-ub*fi0m0)/cmu
fi1p1=-((one+2.0_wp_*m)*fi2p0-2.0_wp_*(m+one)*ub*fi1p0 &
+up*um*fi0p0)/cmu
fi1m1=-((one+2.0_wp_*m)*fi2m0-2.0_wp_*(m+one)*ub*fi1m0 &
+up*um*fi0m0)/cmu
fi2p1=(2.0_wp_*(one+m)*fi1p1-2.0_wp_*m* &
(ub*fi2p0-up*um*fi1p0))/cmu
fi2m1=(2.0_wp_*(one+m)*fi1m1-2.0_wp_*m* &
(ub*fi2m0-up*um*fi1m0))/cmu
if(m.ge.n) then
ri(n,0,m)=0.5_wp_*ci*dnl**m*(fi0p1*eep-fi0m1*eem)
ri(n,1,m)=0.5_wp_*ci*dnl**m*(fi1p1*eep-fi1m1*eem)
ri(n,2,m)=0.5_wp_*ci*dnl**m*(fi2p1*eep-fi2m1*eem)
end if
fi0p0=fi0p1
fi1p0=fi1p1
fi2p0=fi2p1
fi0m0=fi0m1
fi1m0=fi1m1
fi2m0=fi2m1
end do
else
ee=exp(-mu*(ygn-one+npl*ub))
call ssbi(aa,n,lrm,fsbi)
do m=n,lrm
cm=sqrt_pi*fact(m)*du**(2*m+1)
cim=0.5_wp_*ci*dnl**m
mm=m-n+1
fi0m=cm*fsbi(mm)
fi1m=-0.5_wp_*aa*cm*fsbi(mm+1)
fi2m=0.5_wp_*cm*(fsbi(mm+1)+0.5_wp_*aa*aa*fsbi(mm+2))
ri(n,0,m)=cim*ee*fi0m
ri(n,1,m)=cim*ee*(du*fi1m+ub*fi0m)
ri(n,2,m)=cim*ee*(du*du*fi2m+2.0_wp_*du*ub*fi1m+ub*ub*fi0m)
end do
end if
end if
end do
!
end subroutine antihermitian
!
!
!
subroutine ssbi(zz,n,l,fsbi)
use math, only : gamm
implicit none
! local constants
integer, parameter :: lmx=20,nmx=lmx+2
real(wp_), parameter :: eps=1.0e-10_wp_
! arguments
integer :: n,l
real(wp_) :: zz
real(wp_), dimension(nmx) :: fsbi
! local variables
integer :: k,m,mm
real(wp_) :: c0,c1,sbi
!
do m=n,l+2
c0=one/gamm(dble(m)+1.5_wp_)
sbi=c0
do k=1,50
c1=c0*0.25_wp_*zz**2/(dble(m+k)+0.5_wp_)/dble(k)
sbi=sbi+c1
if(c1/sbi.lt.eps) exit
c0=c1
end do
mm=m-n+1
fsbi(mm)=sbi
end do
!
end subroutine ssbi
!
!
!
subroutine expinit
implicit none
! local variables
integer :: i
!
do i = 1, npts+1
ttv(i) = -tmax+dble(i-1)*dtex
extv(i)=exp(-ttv(i)*ttv(i))
end do
!
end subroutine expinit
!
!
!
subroutine diel_tens_wr(xg,yg,mu,npl,e330,epsl,lrm)
! Weakly relativistic dielectric tensor computation of dielectric
! tensor elements (Krivenki and Orefice, JPP 30,125 - 1983)
!
use math, only : fact
implicit none
! arguments
integer :: lrm
real(wp_) :: xg,yg,npl,mu
complex(wp_) :: e330,epsl(3,3,lrm)
! local variables
integer :: l,lm,is,k
real(wp_) :: npl2,fcl,w,asl,bsl
complex(wp_) :: ca11,ca12,ca13,ca22,ca23,ca33,cq0p,cq0m,cq1p,cq1m,cq2p
complex(wp_), dimension(0:lrm,0:2) :: cefp,cefm
!
npl2=npl*npl
!
call fsup(cefp,cefm,lrm,yg,npl,mu)
!
do l=1,lrm
lm=l-1
fcl=0.5_wp_**l*((one/yg)**2/mu)**lm*fact(2*l)/fact(l)
ca11=czero
ca12=czero
ca13=czero
ca22=czero
ca23=czero
ca33=czero
do is=0,l
k=l-is
w=(-one)**k
!
asl=w/(fact(is+l)*fact(l-is))
bsl=asl*(is*is+dble(2*k*lm*(l+is))/(2.0_wp_*l-one))
!
cq0p=mu*cefp(is,0)
cq0m=mu*cefm(is,0)
cq1p=mu*npl*(cefp(is,0)-cefp(is,1))
cq1m=mu*npl*(cefm(is,0)-cefm(is,1))
cq2p=cefp(is,1)+mu*npl2*(cefp(is,2)+cefp(is,0)-2.0_wp_*cefp(is,1))
!
ca11=ca11+is**2*asl*cq0p
ca12=ca12+is*l*asl*cq0m
ca22=ca22+bsl*cq0p
ca13=ca13+is*asl*cq1m/yg
ca23=ca23+l*asl*cq1p/yg
ca33=ca33+asl*cq2p/yg**2
end do
epsl(1,1,l) = -xg*ca11*fcl
epsl(1,2,l) = +im*xg*ca12*fcl
epsl(2,2,l) = -xg*ca22*fcl
epsl(1,3,l) = -xg*ca13*fcl
epsl(2,3,l) = -im*xg*ca23*fcl
epsl(3,3,l) = -xg*ca33*fcl
end do
!
cq2p=cefp(0,1)+mu*npl2*(cefp(0,2)+cefp(0,0)-2.0_wp_*cefp(0,1))
e330=one-xg*mu*cq2p
!
epsl(1,1,1) = one + epsl(1,1,1)
epsl(2,2,1) = one + epsl(2,2,1)
!
do l=1,lrm
epsl(2,1,l) = - epsl(1,2,l)
epsl(3,1,l) = epsl(1,3,l)
epsl(3,2,l) = - epsl(2,3,l)
end do
!
end subroutine diel_tens_wr
!
!
!
subroutine fsup(cefp,cefm,lrm,yg,npl,mu)
implicit none
! local constants
real(wp_), parameter :: apsicr=0.7_wp_
! arguments
integer :: lrm
real(wp_) :: yg,npl,mu
complex(wp_), dimension(0:lrm,0:2) :: cefp,cefm
! local variables
integer :: is,l,iq,ir,iflag
real(wp_) :: psi,apsi,alpha,phi2,phim,xp,yp,xm,ym,x0,y0, &
zrp,zip,zrm,zim,zr0,zi0
complex(wp_) :: czp,czm,cf12,cf32,cphi,cz0,cdz0,cf0,cf1,cf2
!
psi=sqrt(0.5_wp_*mu)*npl
apsi=abs(psi)
!
do is=0,lrm
alpha=npl*npl/2.0_wp_+is*yg-one
phi2=mu*alpha
phim=sqrt(abs(phi2))
if (alpha.ge.0) then
xp=psi-phim
yp=zero
xm=-psi-phim
ym=zero
x0=-phim
y0=zero
else
xp=psi
yp=phim
xm=-psi
ym=phim
x0=zero
y0=phim
end if
call zetac (xp,yp,zrp,zip,iflag)
call zetac (xm,ym,zrm,zim,iflag)
!
czp=dcmplx(zrp,zip)
czm=dcmplx(zrm,zim)
cf12=czero
if (alpha.ge.0) then
if (alpha.ne.0) cf12=-(czp+czm)/(2.0_wp_*phim)
else
cf12=-im*(czp+czm)/(2.0_wp_*phim)
end if
!
if(apsi.gt.apsicr) then
cf32=-(czp-czm)/(2.0_wp_*psi)
else
cphi=phim
if(alpha.lt.0) cphi=-im*phim
call zetac (x0,y0,zr0,zi0,iflag)
cz0=dcmplx(zr0,zi0)
cdz0=2.0_wp_*(one-cphi*cz0)
cf32=cdz0
end if
!
cf0=cf12
cf1=cf32
cefp(is,0)=cf32
cefm(is,0)=cf32
do l=1,is+2
iq=l-1
if(apsi.gt.apsicr) then
cf2=(one+phi2*cf0-(iq+0.5_wp_)*cf1)/psi**2
else
cf2=(one+phi2*cf1)/dble(iq+1.5_wp_)
end if
ir=l-is
if(ir.ge.0) then
cefp(is,ir)=cf2
cefm(is,ir)=cf2
end if
cf0=cf1
cf1=cf2
end do
!
if(is.ne.0) then
!
alpha=npl*npl/2.0_wp_-is*yg-one
phi2=mu*alpha
phim=sqrt(abs(phi2))
if (alpha.ge.zero) then
xp=psi-phim
yp=zero
xm=-psi-phim
ym=zero
x0=-phim
y0=zero
else
xp=psi
yp=phim
xm=-psi
ym=phim
x0=zero
y0=phim
end if
call zetac (xp,yp,zrp,zip,iflag)
call zetac (xm,ym,zrm,zim,iflag)
!
czp=dcmplx(zrp,zip)
czm=dcmplx(zrm,zim)
!
cf12=czero
if (alpha.ge.0) then
if (alpha.ne.zero) cf12=-(czp+czm)/(2.0_wp_*phim)
else
cf12=-im*(czp+czm)/(2.0_wp_*phim)
end if
if(apsi.gt.apsicr) then
cf32=-(czp-czm)/(2.0_wp_*psi)
else
cphi=phim
if(alpha.lt.0) cphi=-im*phim
call zetac (x0,y0,zr0,zi0,iflag)
cz0=dcmplx(zr0,zi0)
cdz0=2.0_wp_*(one-cphi*cz0)
cf32=cdz0
end if
!
cf0=cf12
cf1=cf32
do l=1,is+2
iq=l-1
if(apsi.gt.apsicr) then
cf2=(one+phi2*cf0-(iq+0.5_wp_)*cf1)/psi**2
else
cf2=(one+phi2*cf1)/dble(iq+1.5_wp_)
end if
ir=l-is
if(ir.ge.0) then
cefp(is,ir)=cefp(is,ir)+cf2
cefm(is,ir)=cefm(is,ir)-cf2
end if
cf0=cf1
cf1=cf2
end do
!
end if
!
end do
!
end subroutine fsup
!
! PLASMA DISPERSION FUNCTION Z of complex argument
! Z(z) = i sqrt(pi) w(z)
! Function w(z) from:
! algorithm 680, collected algorithms from acm.
! this work published in transactions on mathematical software,
! vol. 16, no. 1, pp. 47.
!
subroutine zetac (xi, yi, zr, zi, iflag)
!
! given a complex number z = (xi,yi), this subroutine computes
! the value of the faddeeva-function w(z) = exp(-z**2)*erfc(-i*z),
! where erfc is the complex complementary error-function and i
! means sqrt(-1).
! the accuracy of the algorithm for z in the 1st and 2nd quadrant
! is 14 significant digits; in the 3rd and 4th it is 13 significant
! digits outside a circular region with radius 0.126 around a zero
! of the function.
! all real variables in the program are real(8).
!
!
! the code contains a few compiler-dependent parameters :
! rmaxreal = the maximum value of rmaxreal equals the root of
! rmax = the largest number which can still be
! implemented on the computer in real(8)
! floating-point arithmetic
! rmaxexp = ln(rmax) - ln(2)
! rmaxgoni = the largest possible argument of a real(8)
! goniometric function (cos, sin, ...)
! the reason why these parameters are needed as they are defined will
! be explained in the code by means of comments
!
!
! parameter list
! xi = real part of z
! yi = imaginary part of z
! u = real part of w(z)
! v = imaginary part of w(z)
! iflag = an error flag indicating whether overflow will
! occur or not; type integer;
! the values of this variable have the following
! meaning :
! iflag=0 : no error condition
! iflag=1 : overflow will occur, the routine
! becomes inactive
! xi, yi are the input-parameters
! u, v, iflag are the output-parameters
!
! furthermore the parameter factor equals 2/sqrt(pi)
!
! the routine is not underflow-protected but any variable can be
! put to 0 upon underflow;
!
! reference - gpm poppe, cmj wijers; more efficient computation of
! the complex error-function, acm trans. math. software.
!
implicit none
real(wp_), intent(in) :: xi, yi
real(wp_), intent(out) :: zr, zi
integer, intent(out) :: iflag
real(wp_) :: xabs,yabs,x,y,qrho,xabsq,xquad,yquad,xsum,ysum,xaux,daux, &
u,u1,u2,v,v1,v2,h,h2,qlambda,c,rx,ry,sx,sy,tx,ty,w1
integer :: i,j,n,nu,kapn,np1
real(wp_), parameter :: factor = 1.12837916709551257388_wp_, &
rpi = 2.0_wp_/factor, &
rmaxreal = 0.5e+154_wp_, &
rmaxexp = 708.503061461606_wp_, &
rmaxgoni = 3.53711887601422e+15_wp_
iflag=0
xabs = abs(xi)
yabs = abs(yi)
x = xabs/6.3_wp_
y = yabs/4.4_wp_
!
! the following if-statement protects
! qrho = (x**2 + y**2) against overflow
!
if ((xabs>rmaxreal).or.(yabs>rmaxreal)) then
iflag=1
return
end if
qrho = x**2 + y**2
xabsq = xabs**2
xquad = xabsq - yabs**2
yquad = 2*xabs*yabs
if (qrho<0.085264_wp_) then
!
! if (qrho<0.085264_wp_) then the faddeeva-function is evaluated
! using a power-series (abramowitz/stegun, equation (7.1.5), p.297)
! n is the minimum number of terms needed to obtain the required
! accuracy
!
qrho = (1-0.85_wp_*y)*sqrt(qrho)
n = idnint(6 + 72*qrho)
j = 2*n+1
xsum = 1.0_wp_/j
ysum = 0.0_wp_
do i=n, 1, -1
j = j - 2
xaux = (xsum*xquad - ysum*yquad)/i
ysum = (xsum*yquad + ysum*xquad)/i
xsum = xaux + 1.0_wp_/j
end do
u1 = -factor*(xsum*yabs + ysum*xabs) + 1.0_wp_
v1 = factor*(xsum*xabs - ysum*yabs)
daux = exp(-xquad)
u2 = daux*cos(yquad)
v2 = -daux*sin(yquad)
u = u1*u2 - v1*v2
v = u1*v2 + v1*u2
else
!
! if (qrho>1.o) then w(z) is evaluated using the laplace
! continued fraction
! nu is the minimum number of terms needed to obtain the required
! accuracy
!
! if ((qrho>0.085264_wp_).and.(qrho<1.0)) then w(z) is evaluated
! by a truncated taylor expansion, where the laplace continued fraction
! is used to calculate the derivatives of w(z)
! kapn is the minimum number of terms in the taylor expansion needed
! to obtain the required accuracy
! nu is the minimum number of terms of the continued fraction needed
! to calculate the derivatives with the required accuracy
!
if (qrho>1.0_wp_) then
h = 0.0_wp_
kapn = 0
qrho = sqrt(qrho)
nu = idint(3 + (1442/(26*qrho+77)))
else
qrho = (1-y)*sqrt(1-qrho)
h = 1.88_wp_*qrho
h2 = 2*h
kapn = idnint(7 + 34*qrho)
nu = idnint(16 + 26*qrho)
endif
if (h>0.0_wp_) qlambda = h2**kapn
rx = 0.0_wp_
ry = 0.0_wp_
sx = 0.0_wp_
sy = 0.0_wp_
do n=nu, 0, -1
np1 = n + 1
tx = yabs + h + np1*rx
ty = xabs - np1*ry
c = 0.5_wp_/(tx**2 + ty**2)
rx = c*tx
ry = c*ty
if ((h>0.0_wp_).and.(n<=kapn)) then
tx = qlambda + sx
sx = rx*tx - ry*sy
sy = ry*tx + rx*sy
qlambda = qlambda/h2
endif
end do
if (h==0.0_wp_) then
u = factor*rx
v = factor*ry
else
u = factor*sx
v = factor*sy
end if
if (yabs==0.0_wp_) u = exp(-xabs**2)
end if
!
! evaluation of w(z) in the other quadrants
!
if (yi<0.0_wp_) then
if (qrho<0.085264_wp_) then
u2 = 2*u2
v2 = 2*v2
else
xquad = -xquad
!
! the following if-statement protects 2*exp(-z**2)
! against overflow
!
if ((yquad>rmaxgoni).or. (xquad>rmaxexp)) then
iflag=1
return
end if
w1 = 2.0_wp_*exp(xquad)
u2 = w1*cos(yquad)
v2 = -w1*sin(yquad)
end if
u = u2 - u
v = v2 - v
if (xi>0.0_wp_) v = -v
else
if (xi<0.0_wp_) v = -v
end if
zr = -v*rpi
zi = u*rpi
end subroutine zetac
!
end module dispersion