gray/src/dqagmv.f

1697 lines
67 KiB
Fortran

c
c
c Integration routine dqags.f from quadpack and dependencies: BEGIN
c Modified version for functions f(x,yi) with more than one variable
c
c
subroutine dqagsmv(f,a,b,apar,np,epsabs,epsrel,result,abserr,
* neval,ier,limit,lenw,last,iwork,work)
c***begin prologue dqagsmv
c***date written 800101 (yymmdd)
c***revision date 830518 (yymmdd)
c***category no. h2a1a1
c***keywords automatic integrator, general-purpose,
c (end-point) singularities, extrapolation,
c globally adaptive
c***author piessens,robert,appl. math. & progr. div. - k.u.leuven
c de doncker,elise,appl. math. & prog. div. - k.u.leuven
c***purpose the routine calculates an approximation result to a given
c definite integral i = integral of f over (a,b),
c hopefully satisfying following claim for accuracy
c abs(i-result).le.max(epsabs,epsrel*abs(i)).
c***description
c
c computation of a definite integral
c standard fortran subroutine
c double precision version
c
c
c parameters
c on entry
c f - double precision
c function subprogram defining the integrand
c function f(x,apar,np). the actual name for f needs
c to be declared e x t e r n a l in the driver
c program.
c
c a - double precision
c lower limit of integration
c
c b - double precision
c upper limit of integration
c
c apar - array of parameters of the integrand function f
c
c np - number of parameters. size of apar
c
c epsabs - double precision
c absolute accuracy requested
c epsrel - double precision
c relative accuracy requested
c if epsabs.le.0
c and epsrel.lt.max(50*rel.mach.acc.,0.5d-28),
c the routine will end with ier = 6.
c
c on return
c result - double precision
c approximation to the integral
c
c abserr - double precision
c estimate of the modulus of the absolute error,
c which should equal or exceed abs(i-result)
c
c neval - integer
c number of integrand evaluations
c
c ier - integer
c ier = 0 normal and reliable termination of the
c routine. it is assumed that the requested
c accuracy has been achieved.
c ier.gt.0 abnormal termination of the routine
c the estimates for integral and error are
c less reliable. it is assumed that the
c requested accuracy has not been achieved.
c error messages
c ier = 1 maximum number of subdivisions allowed
c has been achieved. one can allow more sub-
c divisions by increasing the value of limit
c (and taking the according dimension
c adjustments into account. however, if
c this yields no improvement it is advised
c to analyze the integrand in order to
c determine the integration difficulties. if
c the position of a local difficulty can be
c determined (e.g. singularity,
c discontinuity within the interval) one
c will probably gain from splitting up the
c interval at this point and calling the
c integrator on the subranges. if possible,
c an appropriate special-purpose integrator
c should be used, which is designed for
c handling the type of difficulty involved.
c = 2 the occurrence of roundoff error is detec-
c ted, which prevents the requested
c tolerance from being achieved.
c the error may be under-estimated.
c = 3 extremely bad integrand behaviour
c occurs at some points of the integration
c interval.
c = 4 the algorithm does not converge.
c roundoff error is detected in the
c extrapolation table. it is presumed that
c the requested tolerance cannot be
c achieved, and that the returned result is
c the best which can be obtained.
c = 5 the integral is probably divergent, or
c slowly convergent. it must be noted that
c divergence can occur with any other value
c of ier.
c = 6 the input is invalid, because
c (epsabs.le.0 and
c epsrel.lt.max(50*rel.mach.acc.,0.5d-28)
c or limit.lt.1 or lenw.lt.limit*4.
c result, abserr, neval, last are set to
c zero.except when limit or lenw is invalid,
c iwork(1), work(limit*2+1) and
c work(limit*3+1) are set to zero, work(1)
c is set to a and work(limit+1) to b.
c
c dimensioning parameters
c limit - integer
c dimensioning parameter for iwork
c limit determines the maximum number of subintervals
c in the partition of the given integration interval
c (a,b), limit.ge.1.
c if limit.lt.1, the routine will end with ier = 6.
c
c lenw - integer
c dimensioning parameter for work
c lenw must be at least limit*4.
c if lenw.lt.limit*4, the routine will end
c with ier = 6.
c
c last - integer
c on return, last equals the number of subintervals
c produced in the subdivision process, detemines the
c number of significant elements actually in the work
c arrays.
c
c work arrays
c iwork - integer
c vector of dimension at least limit, the first k
c elements of which contain pointers
c to the error estimates over the subintervals
c such that work(limit*3+iwork(1)),... ,
c work(limit*3+iwork(k)) form a decreasing
c sequence, with k = last if last.le.(limit/2+2),
c and k = limit+1-last otherwise
c
c work - double precision
c vector of dimension at least lenw
c on return
c work(1), ..., work(last) contain the left
c end-points of the subintervals in the
c partition of (a,b),
c work(limit+1), ..., work(limit+last) contain
c the right end-points,
c work(limit*2+1), ..., work(limit*2+last) contain
c the integral approximations over the subintervals,
c work(limit*3+1), ..., work(limit*3+last)
c contain the error estimates.
c
c***references (none)
c***routines called dqagsemv,xerror
c***end prologue dqagsmv
c
c
double precision a,abserr,b,epsabs,epsrel,f,result,work,apar
integer ier,iwork,last,lenw,limit,lvl,l1,l2,l3,neval,np
c
dimension iwork(limit),work(lenw),apar(np)
c
external f
c
c check validity of limit and lenw.
c
c***first executable statement dqags
ier = 6
neval = 0
last = 0
result = 0.0d+00
abserr = 0.0d+00
if(limit.lt.1.or.lenw.lt.limit*4) go to 10
c
c prepare call for dqagse.
c
l1 = limit+1
l2 = limit+l1
l3 = limit+l2
c
call dqagsemv(f,a,b,apar,np,epsabs,epsrel,limit,result,abserr,
* neval,ier,work(1),work(l1),work(l2),work(l3),iwork,last)
c
c call error handler if necessary.
c
lvl = 0
10 if(ier.eq.6) lvl = 1
if(ier.ne.0) print*,'habnormal return from dqags',ier,lvl
return
end
c
subroutine dqagsemv(f,a,b,apar,np,epsabs,epsrel,limit,result,
* abserr,neval,ier,alist,blist,rlist,elist,iord,last)
c***begin prologue dqagsemv
c***date written 800101 (yymmdd)
c***revision date 830518 (yymmdd)
c***category no. h2a1a1
c***keywords automatic integrator, general-purpose,
c (end point) singularities, extrapolation,
c globally adaptive
c***author piessens,robert,appl. math. & progr. div. - k.u.leuven
c de doncker,elise,appl. math. & progr. div. - k.u.leuven
c***purpose the routine calculates an approximation result to a given
c definite integral i = integral of f over (a,b),
c hopefully satisfying following claim for accuracy
c abs(i-result).le.max(epsabs,epsrel*abs(i)).
c***description
c
c computation of a definite integral
c standard fortran subroutine
c double precision version
c
c parameters
c on entry
c f - double precision
c function subprogram defining the integrand
c function f(x,apar,np). the actual name for f needs
c to be declared e x t e r n a l in the driver
c program.
c
c a - double precision
c lower limit of integration
c
c b - double precision
c upper limit of integration
c
c apar - array of parameters of the integrand function f
c
c np - number of parameters. size of apar
c
c epsabs - double precision
c absolute accuracy requested
c epsrel - double precision
c relative accuracy requested
c if epsabs.le.0
c and epsrel.lt.max(50*rel.mach.acc.,0.5d-28),
c the routine will end with ier = 6.
c
c limit - integer
c gives an upperbound on the number of subintervals
c in the partition of (a,b)
c
c on return
c result - double precision
c approximation to the integral
c
c abserr - double precision
c estimate of the modulus of the absolute error,
c which should equal or exceed abs(i-result)
c
c neval - integer
c number of integrand evaluations
c
c ier - integer
c ier = 0 normal and reliable termination of the
c routine. it is assumed that the requested
c accuracy has been achieved.
c ier.gt.0 abnormal termination of the routine
c the estimates for integral and error are
c less reliable. it is assumed that the
c requested accuracy has not been achieved.
c error messages
c = 1 maximum number of subdivisions allowed
c has been achieved. one can allow more sub-
c divisions by increasing the value of limit
c (and taking the according dimension
c adjustments into account). however, if
c this yields no improvement it is advised
c to analyze the integrand in order to
c determine the integration difficulties. if
c the position of a local difficulty can be
c determined (e.g. singularity,
c discontinuity within the interval) one
c will probably gain from splitting up the
c interval at this point and calling the
c integrator on the subranges. if possible,
c an appropriate special-purpose integrator
c should be used, which is designed for
c handling the type of difficulty involved.
c = 2 the occurrence of roundoff error is detec-
c ted, which prevents the requested
c tolerance from being achieved.
c the error may be under-estimated.
c = 3 extremely bad integrand behaviour
c occurs at some points of the integration
c interval.
c = 4 the algorithm does not converge.
c roundoff error is detected in the
c extrapolation table.
c it is presumed that the requested
c tolerance cannot be achieved, and that the
c returned result is the best which can be
c obtained.
c = 5 the integral is probably divergent, or
c slowly convergent. it must be noted that
c divergence can occur with any other value
c of ier.
c = 6 the input is invalid, because
c epsabs.le.0 and
c epsrel.lt.max(50*rel.mach.acc.,0.5d-28).
c result, abserr, neval, last, rlist(1),
c iord(1) and elist(1) are set to zero.
c alist(1) and blist(1) are set to a and b
c respectively.
c
c alist - double precision
c vector of dimension at least limit, the first
c last elements of which are the left end points
c of the subintervals in the partition of the
c given integration range (a,b)
c
c blist - double precision
c vector of dimension at least limit, the first
c last elements of which are the right end points
c of the subintervals in the partition of the given
c integration range (a,b)
c
c rlist - double precision
c vector of dimension at least limit, the first
c last elements of which are the integral
c approximations on the subintervals
c
c elist - double precision
c vector of dimension at least limit, the first
c last elements of which are the moduli of the
c absolute error estimates on the subintervals
c
c iord - integer
c vector of dimension at least limit, the first k
c elements of which are pointers to the
c error estimates over the subintervals,
c such that elist(iord(1)), ..., elist(iord(k))
c form a decreasing sequence, with k = last
c if last.le.(limit/2+2), and k = limit+1-last
c otherwise
c
c last - integer
c number of subintervals actually produced in the
c subdivision process
c
c***references (none)
c***routines called d1mach,dqelg,dqk21mv,dqpsrt
c***end prologue dqagsemv
c
double precision a,abseps,abserr,alist,area,area1,area12,area2,a1,
* a2,b,blist,b1,b2,correc,dabs,defabs,defab1,defab2,d1mach,dmax1,
* dres,elist,epmach,epsabs,epsrel,erlarg,erlast,errbnd,errmax,
* error1,error2,erro12,errsum,ertest,f,oflow,resabs,reseps,result,
* res3la,rlist,rlist2,small,uflow,apar
integer id,ier,ierro,iord,iroff1,iroff2,iroff3,jupbnd,k,ksgn,
* ktmin,last,limit,maxerr,neval,nres,nrmax,numrl2,np
logical extrap,noext
c
dimension alist(limit),blist(limit),elist(limit),iord(limit),
* res3la(3),rlist(limit),rlist2(52),apar(np)
c
external f
c
c the dimension of rlist2 is determined by the value of
c limexp in subroutine dqelg (rlist2 should be of dimension
c (limexp+2) at least).
c
c list of major variables
c -----------------------
c
c alist - list of left end points of all subintervals
c considered up to now
c blist - list of right end points of all subintervals
c considered up to now
c rlist(i) - approximation to the integral over
c (alist(i),blist(i))
c rlist2 - array of dimension at least limexp+2 containing
c the part of the epsilon table which is still
c needed for further computations
c elist(i) - error estimate applying to rlist(i)
c maxerr - pointer to the interval with largest error
c estimate
c errmax - elist(maxerr)
c erlast - error on the interval currently subdivided
c (before that subdivision has taken place)
c area - sum of the integrals over the subintervals
c errsum - sum of the errors over the subintervals
c errbnd - requested accuracy max(epsabs,epsrel*
c abs(result))
c *****1 - variable for the left interval
c *****2 - variable for the right interval
c last - index for subdivision
c nres - number of calls to the extrapolation routine
c numrl2 - number of elements currently in rlist2. if an
c appropriate approximation to the compounded
c integral has been obtained it is put in
c rlist2(numrl2) after numrl2 has been increased
c by one.
c small - length of the smallest interval considered up
c to now, multiplied by 1.5
c erlarg - sum of the errors over the intervals larger
c than the smallest interval considered up to now
c extrap - logical variable denoting that the routine is
c attempting to perform extrapolation i.e. before
c subdividing the smallest interval we try to
c decrease the value of erlarg.
c noext - logical variable denoting that extrapolation
c is no longer allowed (true value)
c
c machine dependent constants
c ---------------------------
c
c epmach is the largest relative spacing.
c uflow is the smallest positive magnitude.
c oflow is the largest positive magnitude.
c
c***first executable statement dqagse
epmach = d1mach(4)
c
c test on validity of parameters
c ------------------------------
ier = 0
neval = 0
last = 0
result = 0.0d+00
abserr = 0.0d+00
alist(1) = a
blist(1) = b
rlist(1) = 0.0d+00
elist(1) = 0.0d+00
if(epsabs.le.0.0d+00.and.epsrel.lt.dmax1(0.5d+02*epmach,0.5d-28))
* ier = 6
if(ier.eq.6) go to 999
c
c first approximation to the integral
c -----------------------------------
c
uflow = d1mach(1)
oflow = d1mach(2)
ierro = 0
call dqk21mv(f,a,b,apar,np,result,abserr,defabs,resabs)
c
c test on accuracy.
c
dres = dabs(result)
errbnd = dmax1(epsabs,epsrel*dres)
last = 1
rlist(1) = result
elist(1) = abserr
iord(1) = 1
if(abserr.le.1.0d+02*epmach*defabs.and.abserr.gt.errbnd) ier = 2
if(limit.eq.1) ier = 1
if(ier.ne.0.or.(abserr.le.errbnd.and.abserr.ne.resabs).or.
* abserr.eq.0.0d+00) go to 140
c
c initialization
c --------------
c
rlist2(1) = result
errmax = abserr
maxerr = 1
area = result
errsum = abserr
abserr = oflow
nrmax = 1
nres = 0
numrl2 = 2
ktmin = 0
extrap = .false.
noext = .false.
iroff1 = 0
iroff2 = 0
iroff3 = 0
ksgn = -1
if(dres.ge.(0.1d+01-0.5d+02*epmach)*defabs) ksgn = 1
c
c main do-loop
c ------------
c
do 90 last = 2,limit
c
c bisect the subinterval with the nrmax-th largest error
c estimate.
c
a1 = alist(maxerr)
b1 = 0.5d+00*(alist(maxerr)+blist(maxerr))
a2 = b1
b2 = blist(maxerr)
erlast = errmax
call dqk21mv(f,a1,b1,apar,np,area1,error1,resabs,defab1)
call dqk21mv(f,a2,b2,apar,np,area2,error2,resabs,defab2)
c
c improve previous approximations to integral
c and error and test for accuracy.
c
area12 = area1+area2
erro12 = error1+error2
errsum = errsum+erro12-errmax
area = area+area12-rlist(maxerr)
if(defab1.eq.error1.or.defab2.eq.error2) go to 15
if(dabs(rlist(maxerr)-area12).gt.0.1d-04*dabs(area12)
* .or.erro12.lt.0.99d+00*errmax) go to 10
if(extrap) iroff2 = iroff2+1
if(.not.extrap) iroff1 = iroff1+1
10 if(last.gt.10.and.erro12.gt.errmax) iroff3 = iroff3+1
15 rlist(maxerr) = area1
rlist(last) = area2
errbnd = dmax1(epsabs,epsrel*dabs(area))
c
c test for roundoff error and eventually set error flag.
c
if(iroff1+iroff2.ge.10.or.iroff3.ge.20) ier = 2
if(iroff2.ge.5) ierro = 3
c
c set error flag in the case that the number of subintervals
c equals limit.
c
if(last.eq.limit) ier = 1
c
c set error flag in the case of bad integrand behaviour
c at a point of the integration range.
c
if(dmax1(dabs(a1),dabs(b2)).le.(0.1d+01+0.1d+03*epmach)*
* (dabs(a2)+0.1d+04*uflow)) ier = 4
c
c append the newly-created intervals to the list.
c
if(error2.gt.error1) go to 20
alist(last) = a2
blist(maxerr) = b1
blist(last) = b2
elist(maxerr) = error1
elist(last) = error2
go to 30
20 alist(maxerr) = a2
alist(last) = a1
blist(last) = b1
rlist(maxerr) = area2
rlist(last) = area1
elist(maxerr) = error2
elist(last) = error1
c
c call subroutine dqpsrt to maintain the descending ordering
c in the list of error estimates and select the subinterval
c with nrmax-th largest error estimate (to be bisected next).
c
30 call dqpsrt(limit,last,maxerr,errmax,elist,iord,nrmax)
c ***jump out of do-loop
if(errsum.le.errbnd) go to 115
c ***jump out of do-loop
if(ier.ne.0) go to 100
if(last.eq.2) go to 80
if(noext) go to 90
erlarg = erlarg-erlast
if(dabs(b1-a1).gt.small) erlarg = erlarg+erro12
if(extrap) go to 40
c
c test whether the interval to be bisected next is the
c smallest interval.
c
if(dabs(blist(maxerr)-alist(maxerr)).gt.small) go to 90
extrap = .true.
nrmax = 2
40 if(ierro.eq.3.or.erlarg.le.ertest) go to 60
c
c the smallest interval has the largest error.
c before bisecting decrease the sum of the errors over the
c larger intervals (erlarg) and perform extrapolation.
c
id = nrmax
jupbnd = last
if(last.gt.(2+limit/2)) jupbnd = limit+3-last
do 50 k = id,jupbnd
maxerr = iord(nrmax)
errmax = elist(maxerr)
c ***jump out of do-loop
if(dabs(blist(maxerr)-alist(maxerr)).gt.small) go to 90
nrmax = nrmax+1
50 continue
c
c perform extrapolation.
c
60 numrl2 = numrl2+1
rlist2(numrl2) = area
call dqelg(numrl2,rlist2,reseps,abseps,res3la,nres)
ktmin = ktmin+1
if(ktmin.gt.5.and.abserr.lt.0.1d-02*errsum) ier = 5
if(abseps.ge.abserr) go to 70
ktmin = 0
abserr = abseps
result = reseps
correc = erlarg
ertest = dmax1(epsabs,epsrel*dabs(reseps))
c ***jump out of do-loop
if(abserr.le.ertest) go to 100
c
c prepare bisection of the smallest interval.
c
70 if(numrl2.eq.1) noext = .true.
if(ier.eq.5) go to 100
maxerr = iord(1)
errmax = elist(maxerr)
nrmax = 1
extrap = .false.
small = small*0.5d+00
erlarg = errsum
go to 90
80 small = dabs(b-a)*0.375d+00
erlarg = errsum
ertest = errbnd
rlist2(2) = area
90 continue
c
c set final result and error estimate.
c ------------------------------------
c
100 if(abserr.eq.oflow) go to 115
if(ier+ierro.eq.0) go to 110
if(ierro.eq.3) abserr = abserr+correc
if(ier.eq.0) ier = 3
if(result.ne.0.0d+00.and.area.ne.0.0d+00) go to 105
if(abserr.gt.errsum) go to 115
if(area.eq.0.0d+00) go to 130
go to 110
105 if(abserr/dabs(result).gt.errsum/dabs(area)) go to 115
c
c test on divergence.
c
110 if(ksgn.eq.(-1).and.dmax1(dabs(result),dabs(area)).le.
* defabs*0.1d-01) go to 130
if(0.1d-01.gt.(result/area).or.(result/area).gt.0.1d+03
* .or.errsum.gt.dabs(area)) ier = 6
go to 130
c
c compute global integral sum.
c
115 result = 0.0d+00
do 120 k = 1,last
result = result+rlist(k)
120 continue
abserr = errsum
130 if(ier.gt.2) ier = ier-1
140 neval = 42*last-21
999 return
end
c
subroutine dqk21mv(f,a,b,apar,np,result,abserr,resabs,resasc)
c***begin prologue dqk21mv
c***date written 800101 (yymmdd)
c***revision date 830518 (yymmdd)
c***category no. h2a1a2
c***keywords 21-point gauss-kronrod rules
c***author piessens,robert,appl. math. & progr. div. - k.u.leuven
c de doncker,elise,appl. math. & progr. div. - k.u.leuven
c***purpose to compute i = integral of f over (a,b), with error
c estimate
c j = integral of abs(f) over (a,b)
c***description
c
c integration rules
c standard fortran subroutine
c double precision version
c
c parameters
c on entry
c f - double precision
c function subprogram defining the integrand
c function f(x,apar,np). the actual name for f
c needs to be declared e x t e r n a l in the
c driver program.
c
c a - double precision
c lower limit of integration
c
c b - double precision
c upper limit of integration
c
c apar - array of parameters of the integrand function f
c
c np - number of parameters. size of apar
c
c on return
c result - double precision
c approximation to the integral i
c result is computed by applying the 21-point
c kronrod rule (resk) obtained by optimal addition
c of abscissae to the 10-point gauss rule (resg).
c
c abserr - double precision
c estimate of the modulus of the absolute error,
c which should not exceed abs(i-result)
c
c resabs - double precision
c approximation to the integral j
c
c resasc - double precision
c approximation to the integral of abs(f-i/(b-a))
c over (a,b)
c
c***references (none)
c***routines called d1mach
c***end prologue dqk21mv
c
double precision a,absc,abserr,b,centr,dabs,dhlgth,dmax1,dmin1,
* d1mach,epmach,f,fc,fsum,fval1,fval2,fv1,fv2,hlgth,resabs,resasc,
* resg,resk,reskh,result,uflow,wg,wgk,xgk,apar
integer j,jtw,jtwm1,np
external f
c
dimension fv1(10),fv2(10),wg(5),wgk(11),xgk(11),apar(np)
c
c the abscissae and weights are given for the interval (-1,1).
c because of symmetry only the positive abscissae and their
c corresponding weights are given.
c
c xgk - abscissae of the 21-point kronrod rule
c xgk(2), xgk(4), ... abscissae of the 10-point
c gauss rule
c xgk(1), xgk(3), ... abscissae which are optimally
c added to the 10-point gauss rule
c
c wgk - weights of the 21-point kronrod rule
c
c wg - weights of the 10-point gauss rule
c
c
c gauss quadrature weights and kronron quadrature abscissae and weights
c as evaluated with 80 decimal digit arithmetic by l. w. fullerton,
c bell labs, nov. 1981.
c
data wg ( 1) / 0.0666713443 0868813759 3568809893 332 d0 /
data wg ( 2) / 0.1494513491 5058059314 5776339657 697 d0 /
data wg ( 3) / 0.2190863625 1598204399 5534934228 163 d0 /
data wg ( 4) / 0.2692667193 0999635509 1226921569 469 d0 /
data wg ( 5) / 0.2955242247 1475287017 3892994651 338 d0 /
c
data xgk ( 1) / 0.9956571630 2580808073 5527280689 003 d0 /
data xgk ( 2) / 0.9739065285 1717172007 7964012084 452 d0 /
data xgk ( 3) / 0.9301574913 5570822600 1207180059 508 d0 /
data xgk ( 4) / 0.8650633666 8898451073 2096688423 493 d0 /
data xgk ( 5) / 0.7808177265 8641689706 3717578345 042 d0 /
data xgk ( 6) / 0.6794095682 9902440623 4327365114 874 d0 /
data xgk ( 7) / 0.5627571346 6860468333 9000099272 694 d0 /
data xgk ( 8) / 0.4333953941 2924719079 9265943165 784 d0 /
data xgk ( 9) / 0.2943928627 0146019813 1126603103 866 d0 /
data xgk ( 10) / 0.1488743389 8163121088 4826001129 720 d0 /
data xgk ( 11) / 0.0000000000 0000000000 0000000000 000 d0 /
c
data wgk ( 1) / 0.0116946388 6737187427 8064396062 192 d0 /
data wgk ( 2) / 0.0325581623 0796472747 8818972459 390 d0 /
data wgk ( 3) / 0.0547558965 7435199603 1381300244 580 d0 /
data wgk ( 4) / 0.0750396748 1091995276 7043140916 190 d0 /
data wgk ( 5) / 0.0931254545 8369760553 5065465083 366 d0 /
data wgk ( 6) / 0.1093871588 0229764189 9210590325 805 d0 /
data wgk ( 7) / 0.1234919762 6206585107 7958109831 074 d0 /
data wgk ( 8) / 0.1347092173 1147332592 8054001771 707 d0 /
data wgk ( 9) / 0.1427759385 7706008079 7094273138 717 d0 /
data wgk ( 10) / 0.1477391049 0133849137 4841515972 068 d0 /
data wgk ( 11) / 0.1494455540 0291690566 4936468389 821 d0 /
c
c
c list of major variables
c -----------------------
c
c centr - mid point of the interval
c hlgth - half-length of the interval
c absc - abscissa
c fval* - function value
c resg - result of the 10-point gauss formula
c resk - result of the 21-point kronrod formula
c reskh - approximation to the mean value of f over (a,b),
c i.e. to i/(b-a)
c
c
c machine dependent constants
c ---------------------------
c
c epmach is the largest relative spacing.
c uflow is the smallest positive magnitude.
c
c***first executable statement dqk21
epmach = d1mach(4)
uflow = d1mach(1)
c
centr = 0.5d+00*(a+b)
hlgth = 0.5d+00*(b-a)
dhlgth = dabs(hlgth)
c
c compute the 21-point kronrod approximation to
c the integral, and estimate the absolute error.
c
resg = 0.0d+00
fc = f(centr,apar,np)
resk = wgk(11)*fc
resabs = dabs(resk)
do 10 j=1,5
jtw = 2*j
absc = hlgth*xgk(jtw)
fval1 = f(centr-absc,apar,np)
fval2 = f(centr+absc,apar,np)
fv1(jtw) = fval1
fv2(jtw) = fval2
fsum = fval1+fval2
resg = resg+wg(j)*fsum
resk = resk+wgk(jtw)*fsum
resabs = resabs+wgk(jtw)*(dabs(fval1)+dabs(fval2))
10 continue
do 15 j = 1,5
jtwm1 = 2*j-1
absc = hlgth*xgk(jtwm1)
fval1 = f(centr-absc,apar,np)
fval2 = f(centr+absc,apar,np)
fv1(jtwm1) = fval1
fv2(jtwm1) = fval2
fsum = fval1+fval2
resk = resk+wgk(jtwm1)*fsum
resabs = resabs+wgk(jtwm1)*(dabs(fval1)+dabs(fval2))
15 continue
reskh = resk*0.5d+00
resasc = wgk(11)*dabs(fc-reskh)
do 20 j=1,10
resasc = resasc+wgk(j)*(dabs(fv1(j)-reskh)+dabs(fv2(j)-reskh))
20 continue
result = resk*hlgth
resabs = resabs*dhlgth
resasc = resasc*dhlgth
abserr = dabs((resk-resg)*hlgth)
if(resasc.ne.0.0d+00.and.abserr.ne.0.0d+00)
* abserr = resasc*dmin1(0.1d+01,(0.2d+03*abserr/resasc)**1.5d+00)
if(resabs.gt.uflow/(0.5d+02*epmach)) abserr = dmax1
* ((epmach*0.5d+02)*resabs,abserr)
return
end
c
subroutine dqagimv(f,bound,inf,apar,np,epsabs,epsrel,result,
* abserr,neval,ier,limit,lenw,last,iwork,work)
c***begin prologue dqagimv
c***date written 800101 (yymmdd)
c***revision date 830518 (yymmdd)
c***category no. h2a3a1,h2a4a1
c***keywords automatic integrator, infinite intervals,
c general-purpose, transformation, extrapolation,
c globally adaptive
c***author piessens,robert,appl. math. & progr. div. - k.u.leuven
c de doncker,elise,appl. math. & progr. div. -k.u.leuven
c***purpose the routine calculates an approximation result to a given
c integral i = integral of f over (bound,+infinity)
c or i = integral of f over (-infinity,bound)
c or i = integral of f over (-infinity,+infinity)
c hopefully satisfying following claim for accuracy
c abs(i-result).le.max(epsabs,epsrel*abs(i)).
c***description
c
c integration over infinite intervals
c standard fortran subroutine
c
c parameters
c on entry
c f - double precision
c function subprogram defining the integrand
c function f(x,apar,np). the actual name for f needs
c to be declared e x t e r n a l in the driver
c program.
c
c bound - double precision
c finite bound of integration range
c (has no meaning if interval is doubly-infinite)
c
c inf - integer
c indicating the kind of integration range involved
c inf = 1 corresponds to (bound,+infinity),
c inf = -1 to (-infinity,bound),
c inf = 2 to (-infinity,+infinity).
c
c apar - array of parameters of the integrand function f
c
c np - number of parameters. size of apar
c
c epsabs - double precision
c absolute accuracy requested
c epsrel - double precision
c relative accuracy requested
c if epsabs.le.0
c and epsrel.lt.max(50*rel.mach.acc.,0.5d-28),
c the routine will end with ier = 6.
c
c
c on return
c result - double precision
c approximation to the integral
c
c abserr - double precision
c estimate of the modulus of the absolute error,
c which should equal or exceed abs(i-result)
c
c neval - integer
c number of integrand evaluations
c
c ier - integer
c ier = 0 normal and reliable termination of the
c routine. it is assumed that the requested
c accuracy has been achieved.
c - ier.gt.0 abnormal termination of the routine. the
c estimates for result and error are less
c reliable. it is assumed that the requested
c accuracy has not been achieved.
c error messages
c ier = 1 maximum number of subdivisions allowed
c has been achieved. one can allow more
c subdivisions by increasing the value of
c limit (and taking the according dimension
c adjustments into account). however, if
c this yields no improvement it is advised
c to analyze the integrand in order to
c determine the integration difficulties. if
c the position of a local difficulty can be
c determined (e.g. singularity,
c discontinuity within the interval) one
c will probably gain from splitting up the
c interval at this point and calling the
c integrator on the subranges. if possible,
c an appropriate special-purpose integrator
c should be used, which is designed for
c handling the type of difficulty involved.
c = 2 the occurrence of roundoff error is
c detected, which prevents the requested
c tolerance from being achieved.
c the error may be under-estimated.
c = 3 extremely bad integrand behaviour occurs
c at some points of the integration
c interval.
c = 4 the algorithm does not converge.
c roundoff error is detected in the
c extrapolation table.
c it is assumed that the requested tolerance
c cannot be achieved, and that the returned
c result is the best which can be obtained.
c = 5 the integral is probably divergent, or
c slowly convergent. it must be noted that
c divergence can occur with any other value
c of ier.
c = 6 the input is invalid, because
c (epsabs.le.0 and
c epsrel.lt.max(50*rel.mach.acc.,0.5d-28))
c or limit.lt.1 or leniw.lt.limit*4.
c result, abserr, neval, last are set to
c zero. exept when limit or leniw is
c invalid, iwork(1), work(limit*2+1) and
c work(limit*3+1) are set to zero, work(1)
c is set to a and work(limit+1) to b.
c
c dimensioning parameters
c limit - integer
c dimensioning parameter for iwork
c limit determines the maximum number of subintervals
c in the partition of the given integration interval
c (a,b), limit.ge.1.
c if limit.lt.1, the routine will end with ier = 6.
c
c lenw - integer
c dimensioning parameter for work
c lenw must be at least limit*4.
c if lenw.lt.limit*4, the routine will end
c with ier = 6.
c
c last - integer
c on return, last equals the number of subintervals
c produced in the subdivision process, which
c determines the number of significant elements
c actually in the work arrays.
c
c work arrays
c iwork - integer
c vector of dimension at least limit, the first
c k elements of which contain pointers
c to the error estimates over the subintervals,
c such that work(limit*3+iwork(1)),... ,
c work(limit*3+iwork(k)) form a decreasing
c sequence, with k = last if last.le.(limit/2+2), and
c k = limit+1-last otherwise
c
c work - double precision
c vector of dimension at least lenw
c on return
c work(1), ..., work(last) contain the left
c end points of the subintervals in the
c partition of (a,b),
c work(limit+1), ..., work(limit+last) contain
c the right end points,
c work(limit*2+1), ...,work(limit*2+last) contain the
c integral approximations over the subintervals,
c work(limit*3+1), ..., work(limit*3)
c contain the error estimates.
c***references (none)
c***routines called dqagiemv,xerror
c***end prologue dqagimv
c
double precision abserr,bound,epsabs,epsrel,f,result,work,apar
integer ier,inf,iwork,last,lenw,limit,lvl,l1,l2,l3,neval,np
c
dimension iwork(limit),work(lenw),apar(np)
c
external f
c
c check validity of limit and lenw.
c
c***first executable statement dqagi
ier = 6
neval = 0
last = 0
result = 0.0d+00
abserr = 0.0d+00
if(limit.lt.1.or.lenw.lt.limit*4) go to 10
c
c prepare call for dqagie.
c
l1 = limit+1
l2 = limit+l1
l3 = limit+l2
c
call dqagiemv(f,bound,inf,apar,np,epsabs,epsrel,limit,result,
* abserr,neval,ier,work(1),work(l1),work(l2),work(l3),iwork,last)
c
c call error handler if necessary.
c
lvl = 0
10 if(ier.eq.6) lvl = 1
if(ier.ne.0) print*,'habnormal return from dqagi'
return
end
c
subroutine dqagiemv(f,bound,inf,apar,np,epsabs,epsrel,limit,
* result,abserr,neval,ier,alist,blist,rlist,elist,iord,last)
c***begin prologue dqagiemv
c***date written 800101 (yymmdd)
c***revision date 830518 (yymmdd)
c***category no. h2a3a1,h2a4a1
c***keywords automatic integrator, infinite intervals,
c general-purpose, transformation, extrapolation,
c globally adaptive
c***author piessens,robert,appl. math & progr. div - k.u.leuven
c de doncker,elise,appl. math & progr. div - k.u.leuven
c***purpose the routine calculates an approximation result to a given
c integral i = integral of f over (bound,+infinity)
c or i = integral of f over (-infinity,bound)
c or i = integral of f over (-infinity,+infinity),
c hopefully satisfying following claim for accuracy
c abs(i-result).le.max(epsabs,epsrel*abs(i))
c***description
c
c integration over infinite intervals
c standard fortran subroutine
c
c f - double precision
c function subprogram defining the integrand
c function f(x,apar,np). the actual name for f needs
c to be declared e x t e r n a l in the driver
c program.
c
c bound - double precision
c finite bound of integration range
c (has no meaning if interval is doubly-infinite)
c
c inf - double precision
c indicating the kind of integration range involved
c inf = 1 corresponds to (bound,+infinity),
c inf = -1 to (-infinity,bound),
c inf = 2 to (-infinity,+infinity).
c
c apar - array of parameters of the integrand function f
c
c np - number of parameters. size of apar
c
c epsabs - double precision
c absolute accuracy requested
c epsrel - double precision
c relative accuracy requested
c if epsabs.le.0
c and epsrel.lt.max(50*rel.mach.acc.,0.5d-28),
c the routine will end with ier = 6.
c
c limit - integer
c gives an upper bound on the number of subintervals
c in the partition of (a,b), limit.ge.1
c
c on return
c result - double precision
c approximation to the integral
c
c abserr - double precision
c estimate of the modulus of the absolute error,
c which should equal or exceed abs(i-result)
c
c neval - integer
c number of integrand evaluations
c
c ier - integer
c ier = 0 normal and reliable termination of the
c routine. it is assumed that the requested
c accuracy has been achieved.
c - ier.gt.0 abnormal termination of the routine. the
c estimates for result and error are less
c reliable. it is assumed that the requested
c accuracy has not been achieved.
c error messages
c ier = 1 maximum number of subdivisions allowed
c has been achieved. one can allow more
c subdivisions by increasing the value of
c limit (and taking the according dimension
c adjustments into account). however,if
c this yields no improvement it is advised
c to analyze the integrand in order to
c determine the integration difficulties.
c if the position of a local difficulty can
c be determined (e.g. singularity,
c discontinuity within the interval) one
c will probably gain from splitting up the
c interval at this point and calling the
c integrator on the subranges. if possible,
c an appropriate special-purpose integrator
c should be used, which is designed for
c handling the type of difficulty involved.
c = 2 the occurrence of roundoff error is
c detected, which prevents the requested
c tolerance from being achieved.
c the error may be under-estimated.
c = 3 extremely bad integrand behaviour occurs
c at some points of the integration
c interval.
c = 4 the algorithm does not converge.
c roundoff error is detected in the
c extrapolation table.
c it is assumed that the requested tolerance
c cannot be achieved, and that the returned
c result is the best which can be obtained.
c = 5 the integral is probably divergent, or
c slowly convergent. it must be noted that
c divergence can occur with any other value
c of ier.
c = 6 the input is invalid, because
c (epsabs.le.0 and
c epsrel.lt.max(50*rel.mach.acc.,0.5d-28),
c result, abserr, neval, last, rlist(1),
c elist(1) and iord(1) are set to zero.
c alist(1) and blist(1) are set to 0
c and 1 respectively.
c
c alist - double precision
c vector of dimension at least limit, the first
c last elements of which are the left
c end points of the subintervals in the partition
c of the transformed integration range (0,1).
c
c blist - double precision
c vector of dimension at least limit, the first
c last elements of which are the right
c end points of the subintervals in the partition
c of the transformed integration range (0,1).
c
c rlist - double precision
c vector of dimension at least limit, the first
c last elements of which are the integral
c approximations on the subintervals
c
c elist - double precision
c vector of dimension at least limit, the first
c last elements of which are the moduli of the
c absolute error estimates on the subintervals
c
c iord - integer
c vector of dimension limit, the first k
c elements of which are pointers to the
c error estimates over the subintervals,
c such that elist(iord(1)), ..., elist(iord(k))
c form a decreasing sequence, with k = last
c if last.le.(limit/2+2), and k = limit+1-last
c otherwise
c
c last - integer
c number of subintervals actually produced
c in the subdivision process
c
c***references (none)
c***routines called d1mach,dqelg,dqk15imv,dqpsrt
c***end prologue dqagiemv
double precision abseps,abserr,alist,area,area1,area12,area2,a1,
* a2,blist,boun,bound,b1,b2,correc,dabs,defabs,defab1,defab2,
* dmax1,dres,d1mach,elist,epmach,epsabs,epsrel,erlarg,erlast,
* errbnd,errmax,error1,error2,erro12,errsum,ertest,f,oflow,resabs,
* reseps,result,res3la,rlist,rlist2,small,uflow,apar
integer id,ier,ierro,inf,iord,iroff1,iroff2,iroff3,jupbnd,k,ksgn,
* ktmin,last,limit,maxerr,neval,nres,nrmax,numrl2,np
logical extrap,noext
c
dimension alist(limit),blist(limit),elist(limit),iord(limit),
* res3la(3),rlist(limit),rlist2(52),apar(np)
c
external f
c
c the dimension of rlist2 is determined by the value of
c limexp in subroutine dqelg.
c
c
c list of major variables
c -----------------------
c
c alist - list of left end points of all subintervals
c considered up to now
c blist - list of right end points of all subintervals
c considered up to now
c rlist(i) - approximation to the integral over
c (alist(i),blist(i))
c rlist2 - array of dimension at least (limexp+2),
c containing the part of the epsilon table
c wich is still needed for further computations
c elist(i) - error estimate applying to rlist(i)
c maxerr - pointer to the interval with largest error
c estimate
c errmax - elist(maxerr)
c erlast - error on the interval currently subdivided
c (before that subdivision has taken place)
c area - sum of the integrals over the subintervals
c errsum - sum of the errors over the subintervals
c errbnd - requested accuracy max(epsabs,epsrel*
c abs(result))
c *****1 - variable for the left subinterval
c *****2 - variable for the right subinterval
c last - index for subdivision
c nres - number of calls to the extrapolation routine
c numrl2 - number of elements currently in rlist2. if an
c appropriate approximation to the compounded
c integral has been obtained, it is put in
c rlist2(numrl2) after numrl2 has been increased
c by one.
c small - length of the smallest interval considered up
c to now, multiplied by 1.5
c erlarg - sum of the errors over the intervals larger
c than the smallest interval considered up to now
c extrap - logical variable denoting that the routine
c is attempting to perform extrapolation. i.e.
c before subdividing the smallest interval we
c try to decrease the value of erlarg.
c noext - logical variable denoting that extrapolation
c is no longer allowed (true-value)
c
c machine dependent constants
c ---------------------------
c
c epmach is the largest relative spacing.
c uflow is the smallest positive magnitude.
c oflow is the largest positive magnitude.
c
c***first executable statement dqagie
epmach = d1mach(4)
c
c test on validity of parameters
c -----------------------------
c
ier = 0
neval = 0
last = 0
result = 0.0d+00
abserr = 0.0d+00
alist(1) = 0.0d+00
blist(1) = 0.1d+01
rlist(1) = 0.0d+00
elist(1) = 0.0d+00
iord(1) = 0
if(epsabs.le.0.0d+00.and.epsrel.lt.dmax1(0.5d+02*epmach,0.5d-28))
* ier = 6
if(ier.eq.6) go to 999
c
c
c first approximation to the integral
c -----------------------------------
c
c determine the interval to be mapped onto (0,1).
c if inf = 2 the integral is computed as i = i1+i2, where
c i1 = integral of f over (-infinity,0),
c i2 = integral of f over (0,+infinity).
c
boun = bound
if(inf.eq.2) boun = 0.0d+00
call dqk15imv(f,boun,inf,0.0d+00,0.1d+01,apar,np,result,abserr,
* defabs,resabs)
c
c test on accuracy
c
last = 1
rlist(1) = result
elist(1) = abserr
iord(1) = 1
dres = dabs(result)
errbnd = dmax1(epsabs,epsrel*dres)
if(abserr.le.1.0d+02*epmach*defabs.and.abserr.gt.errbnd) ier = 2
if(limit.eq.1) ier = 1
if(ier.ne.0.or.(abserr.le.errbnd.and.abserr.ne.resabs).or.
* abserr.eq.0.0d+00) go to 130
c
c initialization
c --------------
c
uflow = d1mach(1)
oflow = d1mach(2)
rlist2(1) = result
errmax = abserr
maxerr = 1
area = result
errsum = abserr
abserr = oflow
nrmax = 1
nres = 0
ktmin = 0
numrl2 = 2
extrap = .false.
noext = .false.
ierro = 0
iroff1 = 0
iroff2 = 0
iroff3 = 0
ksgn = -1
if(dres.ge.(0.1d+01-0.5d+02*epmach)*defabs) ksgn = 1
c
c main do-loop
c ------------
c
do 90 last = 2,limit
c
c bisect the subinterval with nrmax-th largest error estimate.
c
a1 = alist(maxerr)
b1 = 0.5d+00*(alist(maxerr)+blist(maxerr))
a2 = b1
b2 = blist(maxerr)
erlast = errmax
call dqk15imv(f,boun,inf,a1,b1,apar,np,area1,error1,resabs,
* defab1)
call dqk15imv(f,boun,inf,a2,b2,apar,np,area2,error2,resabs,
* defab2)
c
c improve previous approximations to integral
c and error and test for accuracy.
c
area12 = area1+area2
erro12 = error1+error2
errsum = errsum+erro12-errmax
area = area+area12-rlist(maxerr)
if(defab1.eq.error1.or.defab2.eq.error2)go to 15
if(dabs(rlist(maxerr)-area12).gt.0.1d-04*dabs(area12)
* .or.erro12.lt.0.99d+00*errmax) go to 10
if(extrap) iroff2 = iroff2+1
if(.not.extrap) iroff1 = iroff1+1
10 if(last.gt.10.and.erro12.gt.errmax) iroff3 = iroff3+1
15 rlist(maxerr) = area1
rlist(last) = area2
errbnd = dmax1(epsabs,epsrel*dabs(area))
c
c test for roundoff error and eventually set error flag.
c
if(iroff1+iroff2.ge.10.or.iroff3.ge.20) ier = 2
if(iroff2.ge.5) ierro = 3
c
c set error flag in the case that the number of
c subintervals equals limit.
c
if(last.eq.limit) ier = 1
c
c set error flag in the case of bad integrand behaviour
c at some points of the integration range.
c
if(dmax1(dabs(a1),dabs(b2)).le.(0.1d+01+0.1d+03*epmach)*
* (dabs(a2)+0.1d+04*uflow)) ier = 4
c
c append the newly-created intervals to the list.
c
if(error2.gt.error1) go to 20
alist(last) = a2
blist(maxerr) = b1
blist(last) = b2
elist(maxerr) = error1
elist(last) = error2
go to 30
20 alist(maxerr) = a2
alist(last) = a1
blist(last) = b1
rlist(maxerr) = area2
rlist(last) = area1
elist(maxerr) = error2
elist(last) = error1
c
c call subroutine dqpsrt to maintain the descending ordering
c in the list of error estimates and select the subinterval
c with nrmax-th largest error estimate (to be bisected next).
c
30 call dqpsrt(limit,last,maxerr,errmax,elist,iord,nrmax)
if(errsum.le.errbnd) go to 115
if(ier.ne.0) go to 100
if(last.eq.2) go to 80
if(noext) go to 90
erlarg = erlarg-erlast
if(dabs(b1-a1).gt.small) erlarg = erlarg+erro12
if(extrap) go to 40
c
c test whether the interval to be bisected next is the
c smallest interval.
c
if(dabs(blist(maxerr)-alist(maxerr)).gt.small) go to 90
extrap = .true.
nrmax = 2
40 if(ierro.eq.3.or.erlarg.le.ertest) go to 60
c
c the smallest interval has the largest error.
c before bisecting decrease the sum of the errors over the
c larger intervals (erlarg) and perform extrapolation.
c
id = nrmax
jupbnd = last
if(last.gt.(2+limit/2)) jupbnd = limit+3-last
do 50 k = id,jupbnd
maxerr = iord(nrmax)
errmax = elist(maxerr)
if(dabs(blist(maxerr)-alist(maxerr)).gt.small) go to 90
nrmax = nrmax+1
50 continue
c
c perform extrapolation.
c
60 numrl2 = numrl2+1
rlist2(numrl2) = area
call dqelg(numrl2,rlist2,reseps,abseps,res3la,nres)
ktmin = ktmin+1
if(ktmin.gt.5.and.abserr.lt.0.1d-02*errsum) ier = 5
if(abseps.ge.abserr) go to 70
ktmin = 0
abserr = abseps
result = reseps
correc = erlarg
ertest = dmax1(epsabs,epsrel*dabs(reseps))
if(abserr.le.ertest) go to 100
c
c prepare bisection of the smallest interval.
c
70 if(numrl2.eq.1) noext = .true.
if(ier.eq.5) go to 100
maxerr = iord(1)
errmax = elist(maxerr)
nrmax = 1
extrap = .false.
small = small*0.5d+00
erlarg = errsum
go to 90
80 small = 0.375d+00
erlarg = errsum
ertest = errbnd
rlist2(2) = area
90 continue
c
c set final result and error estimate.
c ------------------------------------
c
100 if(abserr.eq.oflow) go to 115
if((ier+ierro).eq.0) go to 110
if(ierro.eq.3) abserr = abserr+correc
if(ier.eq.0) ier = 3
if(result.ne.0.0d+00.and.area.ne.0.0d+00)go to 105
if(abserr.gt.errsum)go to 115
if(area.eq.0.0d+00) go to 130
go to 110
105 if(abserr/dabs(result).gt.errsum/dabs(area))go to 115
c
c test on divergence
c
110 if(ksgn.eq.(-1).and.dmax1(dabs(result),dabs(area)).le.
* defabs*0.1d-01) go to 130
if(0.1d-01.gt.(result/area).or.(result/area).gt.0.1d+03.
*or.errsum.gt.dabs(area)) ier = 6
go to 130
c
c compute global integral sum.
c
115 result = 0.0d+00
do 120 k = 1,last
result = result+rlist(k)
120 continue
abserr = errsum
130 neval = 30*last-15
if(inf.eq.2) neval = 2*neval
if(ier.gt.2) ier=ier-1
999 return
end
c
subroutine dqk15imv(f,boun,inf,a,b,apar,np,result,abserr,resabs,
* resasc)
c***begin prologue dqk15imv
c***date written 800101 (yymmdd)
c***revision date 830518 (yymmdd)
c***category no. h2a3a2,h2a4a2
c***keywords 15-point transformed gauss-kronrod rules
c***author piessens,robert,appl. math. & progr. div. - k.u.leuven
c de doncker,elise,appl. math. & progr. div. - k.u.leuven
c***purpose the original (infinite integration range is mapped
c onto the interval (0,1) and (a,b) is a part of (0,1).
c it is the purpose to compute
c i = integral of transformed integrand over (a,b),
c j = integral of abs(transformed integrand) over (a,b).
c***description
c
c integration rule
c standard fortran subroutine
c double precision version
c
c parameters
c on entry
c f - double precision
c fuction subprogram defining the integrand
c function f(x,apar,np). the actual name for f
c needs to be declared e x t e r n a l in the
c calling program.
c
c boun - double precision
c finite bound of original integration
c range (set to zero if inf = +2)
c
c inf - integer
c if inf = -1, the original interval is
c (-infinity,bound),
c if inf = +1, the original interval is
c (bound,+infinity),
c if inf = +2, the original interval is
c (-infinity,+infinity) and
c the integral is computed as the sum of two
c integrals, one over (-infinity,0) and one over
c (0,+infinity).
c
c a - double precision
c lower limit for integration over subrange
c of (0,1)
c
c b - double precision
c upper limit for integration over subrange
c of (0,1)
c
c apar - array of parameters of the integrand function f
c
c np - number of parameters. size of apar
c
c on return
c result - double precision
c approximation to the integral i
c result is computed by applying the 15-point
c kronrod rule(resk) obtained by optimal addition
c of abscissae to the 7-point gauss rule(resg).
c
c abserr - double precision
c estimate of the modulus of the absolute error,
c which should equal or exceed abs(i-result)
c
c resabs - double precision
c approximation to the integral j
c
c resasc - double precision
c approximation to the integral of
c abs((transformed integrand)-i/(b-a)) over (a,b)
c
c***references (none)
c***routines called d1mach
c***end prologue dqk15imv
c
double precision a,absc,absc1,absc2,abserr,b,boun,centr,dabs,dinf,
* dmax1,dmin1,d1mach,epmach,f,fc,fsum,fval1,fval2,fv1,fv2,hlgth,
* resabs,resasc,resg,resk,reskh,result,tabsc1,tabsc2,uflow,wg,wgk,
* xgk,apar
integer inf,j,np
external f
c
dimension fv1(7),fv2(7),xgk(8),wgk(8),wg(8),apar(np)
c
c the abscissae and weights are supplied for the interval
c (-1,1). because of symmetry only the positive abscissae and
c their corresponding weights are given.
c
c xgk - abscissae of the 15-point kronrod rule
c xgk(2), xgk(4), ... abscissae of the 7-point
c gauss rule
c xgk(1), xgk(3), ... abscissae which are optimally
c added to the 7-point gauss rule
c
c wgk - weights of the 15-point kronrod rule
c
c wg - weights of the 7-point gauss rule, corresponding
c to the abscissae xgk(2), xgk(4), ...
c wg(1), wg(3), ... are set to zero.
c
data wg(1) / 0.0d0 /
data wg(2) / 0.1294849661 6886969327 0611432679 082d0 /
data wg(3) / 0.0d0 /
data wg(4) / 0.2797053914 8927666790 1467771423 780d0 /
data wg(5) / 0.0d0 /
data wg(6) / 0.3818300505 0511894495 0369775488 975d0 /
data wg(7) / 0.0d0 /
data wg(8) / 0.4179591836 7346938775 5102040816 327d0 /
c
data xgk(1) / 0.9914553711 2081263920 6854697526 329d0 /
data xgk(2) / 0.9491079123 4275852452 6189684047 851d0 /
data xgk(3) / 0.8648644233 5976907278 9712788640 926d0 /
data xgk(4) / 0.7415311855 9939443986 3864773280 788d0 /
data xgk(5) / 0.5860872354 6769113029 4144838258 730d0 /
data xgk(6) / 0.4058451513 7739716690 6606412076 961d0 /
data xgk(7) / 0.2077849550 0789846760 0689403773 245d0 /
data xgk(8) / 0.0000000000 0000000000 0000000000 000d0 /
c
data wgk(1) / 0.0229353220 1052922496 3732008058 970d0 /
data wgk(2) / 0.0630920926 2997855329 0700663189 204d0 /
data wgk(3) / 0.1047900103 2225018383 9876322541 518d0 /
data wgk(4) / 0.1406532597 1552591874 5189590510 238d0 /
data wgk(5) / 0.1690047266 3926790282 6583426598 550d0 /
data wgk(6) / 0.1903505780 6478540991 3256402421 014d0 /
data wgk(7) / 0.2044329400 7529889241 4161999234 649d0 /
data wgk(8) / 0.2094821410 8472782801 2999174891 714d0 /
c
c
c list of major variables
c -----------------------
c
c centr - mid point of the interval
c hlgth - half-length of the interval
c absc* - abscissa
c tabsc* - transformed abscissa
c fval* - function value
c resg - result of the 7-point gauss formula
c resk - result of the 15-point kronrod formula
c reskh - approximation to the mean value of the transformed
c integrand over (a,b), i.e. to i/(b-a)
c
c machine dependent constants
c ---------------------------
c
c epmach is the largest relative spacing.
c uflow is the smallest positive magnitude.
c
c***first executable statement dqk15imv
epmach = d1mach(4)
uflow = d1mach(1)
dinf = min0(1,inf)
c
centr = 0.5d+00*(a+b)
hlgth = 0.5d+00*(b-a)
tabsc1 = boun+dinf*(0.1d+01-centr)/centr
fval1 = f(tabsc1,apar,np)
if(inf.eq.2) fval1 = fval1+f(-tabsc1,apar,np)
fc = (fval1/centr)/centr
c
c compute the 15-point kronrod approximation to
c the integral, and estimate the error.
c
resg = wg(8)*fc
resk = wgk(8)*fc
resabs = dabs(resk)
do 10 j=1,7
absc = hlgth*xgk(j)
absc1 = centr-absc
absc2 = centr+absc
tabsc1 = boun+dinf*(0.1d+01-absc1)/absc1
tabsc2 = boun+dinf*(0.1d+01-absc2)/absc2
fval1 = f(tabsc1,apar,np)
fval2 = f(tabsc2,apar,np)
if(inf.eq.2) fval1 = fval1+f(-tabsc1,apar,np)
if(inf.eq.2) fval2 = fval2+f(-tabsc2,apar,np)
fval1 = (fval1/absc1)/absc1
fval2 = (fval2/absc2)/absc2
fv1(j) = fval1
fv2(j) = fval2
fsum = fval1+fval2
resg = resg+wg(j)*fsum
resk = resk+wgk(j)*fsum
resabs = resabs+wgk(j)*(dabs(fval1)+dabs(fval2))
10 continue
reskh = resk*0.5d+00
resasc = wgk(8)*dabs(fc-reskh)
do 20 j=1,7
resasc = resasc+wgk(j)*(dabs(fv1(j)-reskh)+dabs(fv2(j)-reskh))
20 continue
result = resk*hlgth
resasc = resasc*hlgth
resabs = resabs*hlgth
abserr = dabs((resk-resg)*hlgth)
if(resasc.ne.0.0d+00.and.abserr.ne.0.d0) abserr = resasc*
* dmin1(0.1d+01,(0.2d+03*abserr/resasc)**1.5d+00)
if(resabs.gt.uflow/(0.5d+02*epmach)) abserr = dmax1
* ((epmach*0.5d+02)*resabs,abserr)
return
end