c c c Integration routine dqags.f from quadpack and dependencies: BEGIN c Modified version for functions f(x,yi) with more than one variable c c subroutine dqagsmv(f,a,b,apar,np,epsabs,epsrel,result,abserr, * neval,ier,limit,lenw,last,iwork,work) c***begin prologue dqagsmv c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a1a1 c***keywords automatic integrator, general-purpose, c (end-point) singularities, extrapolation, c globally adaptive c***author piessens,robert,appl. math. & progr. div. - k.u.leuven c de doncker,elise,appl. math. & prog. div. - k.u.leuven c***purpose the routine calculates an approximation result to a given c definite integral i = integral of f over (a,b), c hopefully satisfying following claim for accuracy c abs(i-result).le.max(epsabs,epsrel*abs(i)). c***description c c computation of a definite integral c standard fortran subroutine c double precision version c c c parameters c on entry c f - double precision c function subprogram defining the integrand c function f(x,apar,np). the actual name for f needs c to be declared e x t e r n a l in the driver c program. c c a - double precision c lower limit of integration c c b - double precision c upper limit of integration c c apar - array of parameters of the integrand function f c c np - number of parameters. size of apar c c epsabs - double precision c absolute accuracy requested c epsrel - double precision c relative accuracy requested c if epsabs.le.0 c and epsrel.lt.max(50*rel.mach.acc.,0.5d-28), c the routine will end with ier = 6. c c on return c result - double precision c approximation to the integral c c abserr - double precision c estimate of the modulus of the absolute error, c which should equal or exceed abs(i-result) c c neval - integer c number of integrand evaluations c c ier - integer c ier = 0 normal and reliable termination of the c routine. it is assumed that the requested c accuracy has been achieved. c ier.gt.0 abnormal termination of the routine c the estimates for integral and error are c less reliable. it is assumed that the c requested accuracy has not been achieved. c error messages c ier = 1 maximum number of subdivisions allowed c has been achieved. one can allow more sub- c divisions by increasing the value of limit c (and taking the according dimension c adjustments into account. however, if c this yields no improvement it is advised c to analyze the integrand in order to c determine the integration difficulties. if c the position of a local difficulty can be c determined (e.g. singularity, c discontinuity within the interval) one c will probably gain from splitting up the c interval at this point and calling the c integrator on the subranges. if possible, c an appropriate special-purpose integrator c should be used, which is designed for c handling the type of difficulty involved. c = 2 the occurrence of roundoff error is detec- c ted, which prevents the requested c tolerance from being achieved. c the error may be under-estimated. c = 3 extremely bad integrand behaviour c occurs at some points of the integration c interval. c = 4 the algorithm does not converge. c roundoff error is detected in the c extrapolation table. it is presumed that c the requested tolerance cannot be c achieved, and that the returned result is c the best which can be obtained. c = 5 the integral is probably divergent, or c slowly convergent. it must be noted that c divergence can occur with any other value c of ier. c = 6 the input is invalid, because c (epsabs.le.0 and c epsrel.lt.max(50*rel.mach.acc.,0.5d-28) c or limit.lt.1 or lenw.lt.limit*4. c result, abserr, neval, last are set to c zero.except when limit or lenw is invalid, c iwork(1), work(limit*2+1) and c work(limit*3+1) are set to zero, work(1) c is set to a and work(limit+1) to b. c c dimensioning parameters c limit - integer c dimensioning parameter for iwork c limit determines the maximum number of subintervals c in the partition of the given integration interval c (a,b), limit.ge.1. c if limit.lt.1, the routine will end with ier = 6. c c lenw - integer c dimensioning parameter for work c lenw must be at least limit*4. c if lenw.lt.limit*4, the routine will end c with ier = 6. c c last - integer c on return, last equals the number of subintervals c produced in the subdivision process, detemines the c number of significant elements actually in the work c arrays. c c work arrays c iwork - integer c vector of dimension at least limit, the first k c elements of which contain pointers c to the error estimates over the subintervals c such that work(limit*3+iwork(1)),... , c work(limit*3+iwork(k)) form a decreasing c sequence, with k = last if last.le.(limit/2+2), c and k = limit+1-last otherwise c c work - double precision c vector of dimension at least lenw c on return c work(1), ..., work(last) contain the left c end-points of the subintervals in the c partition of (a,b), c work(limit+1), ..., work(limit+last) contain c the right end-points, c work(limit*2+1), ..., work(limit*2+last) contain c the integral approximations over the subintervals, c work(limit*3+1), ..., work(limit*3+last) c contain the error estimates. c c***references (none) c***routines called dqagsemv,xerror c***end prologue dqagsmv c c double precision a,abserr,b,epsabs,epsrel,f,result,work,apar integer ier,iwork,last,lenw,limit,lvl,l1,l2,l3,neval,np c dimension iwork(limit),work(lenw),apar(np) c external f c c check validity of limit and lenw. c c***first executable statement dqags ier = 6 neval = 0 last = 0 result = 0.0d+00 abserr = 0.0d+00 if(limit.lt.1.or.lenw.lt.limit*4) go to 10 c c prepare call for dqagse. c l1 = limit+1 l2 = limit+l1 l3 = limit+l2 c call dqagsemv(f,a,b,apar,np,epsabs,epsrel,limit,result,abserr, * neval,ier,work(1),work(l1),work(l2),work(l3),iwork,last) c c call error handler if necessary. c lvl = 0 10 if(ier.eq.6) lvl = 1 if(ier.ne.0) print*,'habnormal return from dqags',ier,lvl return end c subroutine dqagsemv(f,a,b,apar,np,epsabs,epsrel,limit,result, * abserr,neval,ier,alist,blist,rlist,elist,iord,last) c***begin prologue dqagsemv c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a1a1 c***keywords automatic integrator, general-purpose, c (end point) singularities, extrapolation, c globally adaptive c***author piessens,robert,appl. math. & progr. div. - k.u.leuven c de doncker,elise,appl. math. & progr. div. - k.u.leuven c***purpose the routine calculates an approximation result to a given c definite integral i = integral of f over (a,b), c hopefully satisfying following claim for accuracy c abs(i-result).le.max(epsabs,epsrel*abs(i)). c***description c c computation of a definite integral c standard fortran subroutine c double precision version c c parameters c on entry c f - double precision c function subprogram defining the integrand c function f(x,apar,np). the actual name for f needs c to be declared e x t e r n a l in the driver c program. c c a - double precision c lower limit of integration c c b - double precision c upper limit of integration c c apar - array of parameters of the integrand function f c c np - number of parameters. size of apar c c epsabs - double precision c absolute accuracy requested c epsrel - double precision c relative accuracy requested c if epsabs.le.0 c and epsrel.lt.max(50*rel.mach.acc.,0.5d-28), c the routine will end with ier = 6. c c limit - integer c gives an upperbound on the number of subintervals c in the partition of (a,b) c c on return c result - double precision c approximation to the integral c c abserr - double precision c estimate of the modulus of the absolute error, c which should equal or exceed abs(i-result) c c neval - integer c number of integrand evaluations c c ier - integer c ier = 0 normal and reliable termination of the c routine. it is assumed that the requested c accuracy has been achieved. c ier.gt.0 abnormal termination of the routine c the estimates for integral and error are c less reliable. it is assumed that the c requested accuracy has not been achieved. c error messages c = 1 maximum number of subdivisions allowed c has been achieved. one can allow more sub- c divisions by increasing the value of limit c (and taking the according dimension c adjustments into account). however, if c this yields no improvement it is advised c to analyze the integrand in order to c determine the integration difficulties. if c the position of a local difficulty can be c determined (e.g. singularity, c discontinuity within the interval) one c will probably gain from splitting up the c interval at this point and calling the c integrator on the subranges. if possible, c an appropriate special-purpose integrator c should be used, which is designed for c handling the type of difficulty involved. c = 2 the occurrence of roundoff error is detec- c ted, which prevents the requested c tolerance from being achieved. c the error may be under-estimated. c = 3 extremely bad integrand behaviour c occurs at some points of the integration c interval. c = 4 the algorithm does not converge. c roundoff error is detected in the c extrapolation table. c it is presumed that the requested c tolerance cannot be achieved, and that the c returned result is the best which can be c obtained. c = 5 the integral is probably divergent, or c slowly convergent. it must be noted that c divergence can occur with any other value c of ier. c = 6 the input is invalid, because c epsabs.le.0 and c epsrel.lt.max(50*rel.mach.acc.,0.5d-28). c result, abserr, neval, last, rlist(1), c iord(1) and elist(1) are set to zero. c alist(1) and blist(1) are set to a and b c respectively. c c alist - double precision c vector of dimension at least limit, the first c last elements of which are the left end points c of the subintervals in the partition of the c given integration range (a,b) c c blist - double precision c vector of dimension at least limit, the first c last elements of which are the right end points c of the subintervals in the partition of the given c integration range (a,b) c c rlist - double precision c vector of dimension at least limit, the first c last elements of which are the integral c approximations on the subintervals c c elist - double precision c vector of dimension at least limit, the first c last elements of which are the moduli of the c absolute error estimates on the subintervals c c iord - integer c vector of dimension at least limit, the first k c elements of which are pointers to the c error estimates over the subintervals, c such that elist(iord(1)), ..., elist(iord(k)) c form a decreasing sequence, with k = last c if last.le.(limit/2+2), and k = limit+1-last c otherwise c c last - integer c number of subintervals actually produced in the c subdivision process c c***references (none) c***routines called d1mach,dqelg,dqk21mv,dqpsrt c***end prologue dqagsemv c double precision a,abseps,abserr,alist,area,area1,area12,area2,a1, * a2,b,blist,b1,b2,correc,dabs,defabs,defab1,defab2,d1mach,dmax1, * dres,elist,epmach,epsabs,epsrel,erlarg,erlast,errbnd,errmax, * error1,error2,erro12,errsum,ertest,f,oflow,resabs,reseps,result, * res3la,rlist,rlist2,small,uflow,apar integer id,ier,ierro,iord,iroff1,iroff2,iroff3,jupbnd,k,ksgn, * ktmin,last,limit,maxerr,neval,nres,nrmax,numrl2,np logical extrap,noext c dimension alist(limit),blist(limit),elist(limit),iord(limit), * res3la(3),rlist(limit),rlist2(52),apar(np) c external f c c the dimension of rlist2 is determined by the value of c limexp in subroutine dqelg (rlist2 should be of dimension c (limexp+2) at least). c c list of major variables c ----------------------- c c alist - list of left end points of all subintervals c considered up to now c blist - list of right end points of all subintervals c considered up to now c rlist(i) - approximation to the integral over c (alist(i),blist(i)) c rlist2 - array of dimension at least limexp+2 containing c the part of the epsilon table which is still c needed for further computations c elist(i) - error estimate applying to rlist(i) c maxerr - pointer to the interval with largest error c estimate c errmax - elist(maxerr) c erlast - error on the interval currently subdivided c (before that subdivision has taken place) c area - sum of the integrals over the subintervals c errsum - sum of the errors over the subintervals c errbnd - requested accuracy max(epsabs,epsrel* c abs(result)) c *****1 - variable for the left interval c *****2 - variable for the right interval c last - index for subdivision c nres - number of calls to the extrapolation routine c numrl2 - number of elements currently in rlist2. if an c appropriate approximation to the compounded c integral has been obtained it is put in c rlist2(numrl2) after numrl2 has been increased c by one. c small - length of the smallest interval considered up c to now, multiplied by 1.5 c erlarg - sum of the errors over the intervals larger c than the smallest interval considered up to now c extrap - logical variable denoting that the routine is c attempting to perform extrapolation i.e. before c subdividing the smallest interval we try to c decrease the value of erlarg. c noext - logical variable denoting that extrapolation c is no longer allowed (true value) c c machine dependent constants c --------------------------- c c epmach is the largest relative spacing. c uflow is the smallest positive magnitude. c oflow is the largest positive magnitude. c c***first executable statement dqagse epmach = d1mach(4) c c test on validity of parameters c ------------------------------ ier = 0 neval = 0 last = 0 result = 0.0d+00 abserr = 0.0d+00 alist(1) = a blist(1) = b rlist(1) = 0.0d+00 elist(1) = 0.0d+00 if(epsabs.le.0.0d+00.and.epsrel.lt.dmax1(0.5d+02*epmach,0.5d-28)) * ier = 6 if(ier.eq.6) go to 999 c c first approximation to the integral c ----------------------------------- c uflow = d1mach(1) oflow = d1mach(2) ierro = 0 call dqk21mv(f,a,b,apar,np,result,abserr,defabs,resabs) c c test on accuracy. c dres = dabs(result) errbnd = dmax1(epsabs,epsrel*dres) last = 1 rlist(1) = result elist(1) = abserr iord(1) = 1 if(abserr.le.1.0d+02*epmach*defabs.and.abserr.gt.errbnd) ier = 2 if(limit.eq.1) ier = 1 if(ier.ne.0.or.(abserr.le.errbnd.and.abserr.ne.resabs).or. * abserr.eq.0.0d+00) go to 140 c c initialization c -------------- c rlist2(1) = result errmax = abserr maxerr = 1 area = result errsum = abserr abserr = oflow nrmax = 1 nres = 0 numrl2 = 2 ktmin = 0 extrap = .false. noext = .false. iroff1 = 0 iroff2 = 0 iroff3 = 0 ksgn = -1 if(dres.ge.(0.1d+01-0.5d+02*epmach)*defabs) ksgn = 1 c c main do-loop c ------------ c do 90 last = 2,limit c c bisect the subinterval with the nrmax-th largest error c estimate. c a1 = alist(maxerr) b1 = 0.5d+00*(alist(maxerr)+blist(maxerr)) a2 = b1 b2 = blist(maxerr) erlast = errmax call dqk21mv(f,a1,b1,apar,np,area1,error1,resabs,defab1) call dqk21mv(f,a2,b2,apar,np,area2,error2,resabs,defab2) c c improve previous approximations to integral c and error and test for accuracy. c area12 = area1+area2 erro12 = error1+error2 errsum = errsum+erro12-errmax area = area+area12-rlist(maxerr) if(defab1.eq.error1.or.defab2.eq.error2) go to 15 if(dabs(rlist(maxerr)-area12).gt.0.1d-04*dabs(area12) * .or.erro12.lt.0.99d+00*errmax) go to 10 if(extrap) iroff2 = iroff2+1 if(.not.extrap) iroff1 = iroff1+1 10 if(last.gt.10.and.erro12.gt.errmax) iroff3 = iroff3+1 15 rlist(maxerr) = area1 rlist(last) = area2 errbnd = dmax1(epsabs,epsrel*dabs(area)) c c test for roundoff error and eventually set error flag. c if(iroff1+iroff2.ge.10.or.iroff3.ge.20) ier = 2 if(iroff2.ge.5) ierro = 3 c c set error flag in the case that the number of subintervals c equals limit. c if(last.eq.limit) ier = 1 c c set error flag in the case of bad integrand behaviour c at a point of the integration range. c if(dmax1(dabs(a1),dabs(b2)).le.(0.1d+01+0.1d+03*epmach)* * (dabs(a2)+0.1d+04*uflow)) ier = 4 c c append the newly-created intervals to the list. c if(error2.gt.error1) go to 20 alist(last) = a2 blist(maxerr) = b1 blist(last) = b2 elist(maxerr) = error1 elist(last) = error2 go to 30 20 alist(maxerr) = a2 alist(last) = a1 blist(last) = b1 rlist(maxerr) = area2 rlist(last) = area1 elist(maxerr) = error2 elist(last) = error1 c c call subroutine dqpsrt to maintain the descending ordering c in the list of error estimates and select the subinterval c with nrmax-th largest error estimate (to be bisected next). c 30 call dqpsrt(limit,last,maxerr,errmax,elist,iord,nrmax) c ***jump out of do-loop if(errsum.le.errbnd) go to 115 c ***jump out of do-loop if(ier.ne.0) go to 100 if(last.eq.2) go to 80 if(noext) go to 90 erlarg = erlarg-erlast if(dabs(b1-a1).gt.small) erlarg = erlarg+erro12 if(extrap) go to 40 c c test whether the interval to be bisected next is the c smallest interval. c if(dabs(blist(maxerr)-alist(maxerr)).gt.small) go to 90 extrap = .true. nrmax = 2 40 if(ierro.eq.3.or.erlarg.le.ertest) go to 60 c c the smallest interval has the largest error. c before bisecting decrease the sum of the errors over the c larger intervals (erlarg) and perform extrapolation. c id = nrmax jupbnd = last if(last.gt.(2+limit/2)) jupbnd = limit+3-last do 50 k = id,jupbnd maxerr = iord(nrmax) errmax = elist(maxerr) c ***jump out of do-loop if(dabs(blist(maxerr)-alist(maxerr)).gt.small) go to 90 nrmax = nrmax+1 50 continue c c perform extrapolation. c 60 numrl2 = numrl2+1 rlist2(numrl2) = area call dqelg(numrl2,rlist2,reseps,abseps,res3la,nres) ktmin = ktmin+1 if(ktmin.gt.5.and.abserr.lt.0.1d-02*errsum) ier = 5 if(abseps.ge.abserr) go to 70 ktmin = 0 abserr = abseps result = reseps correc = erlarg ertest = dmax1(epsabs,epsrel*dabs(reseps)) c ***jump out of do-loop if(abserr.le.ertest) go to 100 c c prepare bisection of the smallest interval. c 70 if(numrl2.eq.1) noext = .true. if(ier.eq.5) go to 100 maxerr = iord(1) errmax = elist(maxerr) nrmax = 1 extrap = .false. small = small*0.5d+00 erlarg = errsum go to 90 80 small = dabs(b-a)*0.375d+00 erlarg = errsum ertest = errbnd rlist2(2) = area 90 continue c c set final result and error estimate. c ------------------------------------ c 100 if(abserr.eq.oflow) go to 115 if(ier+ierro.eq.0) go to 110 if(ierro.eq.3) abserr = abserr+correc if(ier.eq.0) ier = 3 if(result.ne.0.0d+00.and.area.ne.0.0d+00) go to 105 if(abserr.gt.errsum) go to 115 if(area.eq.0.0d+00) go to 130 go to 110 105 if(abserr/dabs(result).gt.errsum/dabs(area)) go to 115 c c test on divergence. c 110 if(ksgn.eq.(-1).and.dmax1(dabs(result),dabs(area)).le. * defabs*0.1d-01) go to 130 if(0.1d-01.gt.(result/area).or.(result/area).gt.0.1d+03 * .or.errsum.gt.dabs(area)) ier = 6 go to 130 c c compute global integral sum. c 115 result = 0.0d+00 do 120 k = 1,last result = result+rlist(k) 120 continue abserr = errsum 130 if(ier.gt.2) ier = ier-1 140 neval = 42*last-21 999 return end c subroutine dqk21mv(f,a,b,apar,np,result,abserr,resabs,resasc) c***begin prologue dqk21mv c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a1a2 c***keywords 21-point gauss-kronrod rules c***author piessens,robert,appl. math. & progr. div. - k.u.leuven c de doncker,elise,appl. math. & progr. div. - k.u.leuven c***purpose to compute i = integral of f over (a,b), with error c estimate c j = integral of abs(f) over (a,b) c***description c c integration rules c standard fortran subroutine c double precision version c c parameters c on entry c f - double precision c function subprogram defining the integrand c function f(x,apar,np). the actual name for f c needs to be declared e x t e r n a l in the c driver program. c c a - double precision c lower limit of integration c c b - double precision c upper limit of integration c c apar - array of parameters of the integrand function f c c np - number of parameters. size of apar c c on return c result - double precision c approximation to the integral i c result is computed by applying the 21-point c kronrod rule (resk) obtained by optimal addition c of abscissae to the 10-point gauss rule (resg). c c abserr - double precision c estimate of the modulus of the absolute error, c which should not exceed abs(i-result) c c resabs - double precision c approximation to the integral j c c resasc - double precision c approximation to the integral of abs(f-i/(b-a)) c over (a,b) c c***references (none) c***routines called d1mach c***end prologue dqk21mv c double precision a,absc,abserr,b,centr,dabs,dhlgth,dmax1,dmin1, * d1mach,epmach,f,fc,fsum,fval1,fval2,fv1,fv2,hlgth,resabs,resasc, * resg,resk,reskh,result,uflow,wg,wgk,xgk,apar integer j,jtw,jtwm1,np external f c dimension fv1(10),fv2(10),wg(5),wgk(11),xgk(11),apar(np) c c the abscissae and weights are given for the interval (-1,1). c because of symmetry only the positive abscissae and their c corresponding weights are given. c c xgk - abscissae of the 21-point kronrod rule c xgk(2), xgk(4), ... abscissae of the 10-point c gauss rule c xgk(1), xgk(3), ... abscissae which are optimally c added to the 10-point gauss rule c c wgk - weights of the 21-point kronrod rule c c wg - weights of the 10-point gauss rule c c c gauss quadrature weights and kronron quadrature abscissae and weights c as evaluated with 80 decimal digit arithmetic by l. w. fullerton, c bell labs, nov. 1981. c data wg ( 1) / 0.0666713443 0868813759 3568809893 332 d0 / data wg ( 2) / 0.1494513491 5058059314 5776339657 697 d0 / data wg ( 3) / 0.2190863625 1598204399 5534934228 163 d0 / data wg ( 4) / 0.2692667193 0999635509 1226921569 469 d0 / data wg ( 5) / 0.2955242247 1475287017 3892994651 338 d0 / c data xgk ( 1) / 0.9956571630 2580808073 5527280689 003 d0 / data xgk ( 2) / 0.9739065285 1717172007 7964012084 452 d0 / data xgk ( 3) / 0.9301574913 5570822600 1207180059 508 d0 / data xgk ( 4) / 0.8650633666 8898451073 2096688423 493 d0 / data xgk ( 5) / 0.7808177265 8641689706 3717578345 042 d0 / data xgk ( 6) / 0.6794095682 9902440623 4327365114 874 d0 / data xgk ( 7) / 0.5627571346 6860468333 9000099272 694 d0 / data xgk ( 8) / 0.4333953941 2924719079 9265943165 784 d0 / data xgk ( 9) / 0.2943928627 0146019813 1126603103 866 d0 / data xgk ( 10) / 0.1488743389 8163121088 4826001129 720 d0 / data xgk ( 11) / 0.0000000000 0000000000 0000000000 000 d0 / c data wgk ( 1) / 0.0116946388 6737187427 8064396062 192 d0 / data wgk ( 2) / 0.0325581623 0796472747 8818972459 390 d0 / data wgk ( 3) / 0.0547558965 7435199603 1381300244 580 d0 / data wgk ( 4) / 0.0750396748 1091995276 7043140916 190 d0 / data wgk ( 5) / 0.0931254545 8369760553 5065465083 366 d0 / data wgk ( 6) / 0.1093871588 0229764189 9210590325 805 d0 / data wgk ( 7) / 0.1234919762 6206585107 7958109831 074 d0 / data wgk ( 8) / 0.1347092173 1147332592 8054001771 707 d0 / data wgk ( 9) / 0.1427759385 7706008079 7094273138 717 d0 / data wgk ( 10) / 0.1477391049 0133849137 4841515972 068 d0 / data wgk ( 11) / 0.1494455540 0291690566 4936468389 821 d0 / c c c list of major variables c ----------------------- c c centr - mid point of the interval c hlgth - half-length of the interval c absc - abscissa c fval* - function value c resg - result of the 10-point gauss formula c resk - result of the 21-point kronrod formula c reskh - approximation to the mean value of f over (a,b), c i.e. to i/(b-a) c c c machine dependent constants c --------------------------- c c epmach is the largest relative spacing. c uflow is the smallest positive magnitude. c c***first executable statement dqk21 epmach = d1mach(4) uflow = d1mach(1) c centr = 0.5d+00*(a+b) hlgth = 0.5d+00*(b-a) dhlgth = dabs(hlgth) c c compute the 21-point kronrod approximation to c the integral, and estimate the absolute error. c resg = 0.0d+00 fc = f(centr,apar,np) resk = wgk(11)*fc resabs = dabs(resk) do 10 j=1,5 jtw = 2*j absc = hlgth*xgk(jtw) fval1 = f(centr-absc,apar,np) fval2 = f(centr+absc,apar,np) fv1(jtw) = fval1 fv2(jtw) = fval2 fsum = fval1+fval2 resg = resg+wg(j)*fsum resk = resk+wgk(jtw)*fsum resabs = resabs+wgk(jtw)*(dabs(fval1)+dabs(fval2)) 10 continue do 15 j = 1,5 jtwm1 = 2*j-1 absc = hlgth*xgk(jtwm1) fval1 = f(centr-absc,apar,np) fval2 = f(centr+absc,apar,np) fv1(jtwm1) = fval1 fv2(jtwm1) = fval2 fsum = fval1+fval2 resk = resk+wgk(jtwm1)*fsum resabs = resabs+wgk(jtwm1)*(dabs(fval1)+dabs(fval2)) 15 continue reskh = resk*0.5d+00 resasc = wgk(11)*dabs(fc-reskh) do 20 j=1,10 resasc = resasc+wgk(j)*(dabs(fv1(j)-reskh)+dabs(fv2(j)-reskh)) 20 continue result = resk*hlgth resabs = resabs*dhlgth resasc = resasc*dhlgth abserr = dabs((resk-resg)*hlgth) if(resasc.ne.0.0d+00.and.abserr.ne.0.0d+00) * abserr = resasc*dmin1(0.1d+01,(0.2d+03*abserr/resasc)**1.5d+00) if(resabs.gt.uflow/(0.5d+02*epmach)) abserr = dmax1 * ((epmach*0.5d+02)*resabs,abserr) return end c subroutine dqagimv(f,bound,inf,apar,np,epsabs,epsrel,result, * abserr,neval,ier,limit,lenw,last,iwork,work) c***begin prologue dqagimv c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a3a1,h2a4a1 c***keywords automatic integrator, infinite intervals, c general-purpose, transformation, extrapolation, c globally adaptive c***author piessens,robert,appl. math. & progr. div. - k.u.leuven c de doncker,elise,appl. math. & progr. div. -k.u.leuven c***purpose the routine calculates an approximation result to a given c integral i = integral of f over (bound,+infinity) c or i = integral of f over (-infinity,bound) c or i = integral of f over (-infinity,+infinity) c hopefully satisfying following claim for accuracy c abs(i-result).le.max(epsabs,epsrel*abs(i)). c***description c c integration over infinite intervals c standard fortran subroutine c c parameters c on entry c f - double precision c function subprogram defining the integrand c function f(x,apar,np). the actual name for f needs c to be declared e x t e r n a l in the driver c program. c c bound - double precision c finite bound of integration range c (has no meaning if interval is doubly-infinite) c c inf - integer c indicating the kind of integration range involved c inf = 1 corresponds to (bound,+infinity), c inf = -1 to (-infinity,bound), c inf = 2 to (-infinity,+infinity). c c apar - array of parameters of the integrand function f c c np - number of parameters. size of apar c c epsabs - double precision c absolute accuracy requested c epsrel - double precision c relative accuracy requested c if epsabs.le.0 c and epsrel.lt.max(50*rel.mach.acc.,0.5d-28), c the routine will end with ier = 6. c c c on return c result - double precision c approximation to the integral c c abserr - double precision c estimate of the modulus of the absolute error, c which should equal or exceed abs(i-result) c c neval - integer c number of integrand evaluations c c ier - integer c ier = 0 normal and reliable termination of the c routine. it is assumed that the requested c accuracy has been achieved. c - ier.gt.0 abnormal termination of the routine. the c estimates for result and error are less c reliable. it is assumed that the requested c accuracy has not been achieved. c error messages c ier = 1 maximum number of subdivisions allowed c has been achieved. one can allow more c subdivisions by increasing the value of c limit (and taking the according dimension c adjustments into account). however, if c this yields no improvement it is advised c to analyze the integrand in order to c determine the integration difficulties. if c the position of a local difficulty can be c determined (e.g. singularity, c discontinuity within the interval) one c will probably gain from splitting up the c interval at this point and calling the c integrator on the subranges. if possible, c an appropriate special-purpose integrator c should be used, which is designed for c handling the type of difficulty involved. c = 2 the occurrence of roundoff error is c detected, which prevents the requested c tolerance from being achieved. c the error may be under-estimated. c = 3 extremely bad integrand behaviour occurs c at some points of the integration c interval. c = 4 the algorithm does not converge. c roundoff error is detected in the c extrapolation table. c it is assumed that the requested tolerance c cannot be achieved, and that the returned c result is the best which can be obtained. c = 5 the integral is probably divergent, or c slowly convergent. it must be noted that c divergence can occur with any other value c of ier. c = 6 the input is invalid, because c (epsabs.le.0 and c epsrel.lt.max(50*rel.mach.acc.,0.5d-28)) c or limit.lt.1 or leniw.lt.limit*4. c result, abserr, neval, last are set to c zero. exept when limit or leniw is c invalid, iwork(1), work(limit*2+1) and c work(limit*3+1) are set to zero, work(1) c is set to a and work(limit+1) to b. c c dimensioning parameters c limit - integer c dimensioning parameter for iwork c limit determines the maximum number of subintervals c in the partition of the given integration interval c (a,b), limit.ge.1. c if limit.lt.1, the routine will end with ier = 6. c c lenw - integer c dimensioning parameter for work c lenw must be at least limit*4. c if lenw.lt.limit*4, the routine will end c with ier = 6. c c last - integer c on return, last equals the number of subintervals c produced in the subdivision process, which c determines the number of significant elements c actually in the work arrays. c c work arrays c iwork - integer c vector of dimension at least limit, the first c k elements of which contain pointers c to the error estimates over the subintervals, c such that work(limit*3+iwork(1)),... , c work(limit*3+iwork(k)) form a decreasing c sequence, with k = last if last.le.(limit/2+2), and c k = limit+1-last otherwise c c work - double precision c vector of dimension at least lenw c on return c work(1), ..., work(last) contain the left c end points of the subintervals in the c partition of (a,b), c work(limit+1), ..., work(limit+last) contain c the right end points, c work(limit*2+1), ...,work(limit*2+last) contain the c integral approximations over the subintervals, c work(limit*3+1), ..., work(limit*3) c contain the error estimates. c***references (none) c***routines called dqagiemv,xerror c***end prologue dqagimv c double precision abserr,bound,epsabs,epsrel,f,result,work,apar integer ier,inf,iwork,last,lenw,limit,lvl,l1,l2,l3,neval,np c dimension iwork(limit),work(lenw),apar(np) c external f c c check validity of limit and lenw. c c***first executable statement dqagi ier = 6 neval = 0 last = 0 result = 0.0d+00 abserr = 0.0d+00 if(limit.lt.1.or.lenw.lt.limit*4) go to 10 c c prepare call for dqagie. c l1 = limit+1 l2 = limit+l1 l3 = limit+l2 c call dqagiemv(f,bound,inf,apar,np,epsabs,epsrel,limit,result, * abserr,neval,ier,work(1),work(l1),work(l2),work(l3),iwork,last) c c call error handler if necessary. c lvl = 0 10 if(ier.eq.6) lvl = 1 if(ier.ne.0) print*,'habnormal return from dqagi' return end c subroutine dqagiemv(f,bound,inf,apar,np,epsabs,epsrel,limit, * result,abserr,neval,ier,alist,blist,rlist,elist,iord,last) c***begin prologue dqagiemv c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a3a1,h2a4a1 c***keywords automatic integrator, infinite intervals, c general-purpose, transformation, extrapolation, c globally adaptive c***author piessens,robert,appl. math & progr. div - k.u.leuven c de doncker,elise,appl. math & progr. div - k.u.leuven c***purpose the routine calculates an approximation result to a given c integral i = integral of f over (bound,+infinity) c or i = integral of f over (-infinity,bound) c or i = integral of f over (-infinity,+infinity), c hopefully satisfying following claim for accuracy c abs(i-result).le.max(epsabs,epsrel*abs(i)) c***description c c integration over infinite intervals c standard fortran subroutine c c f - double precision c function subprogram defining the integrand c function f(x,apar,np). the actual name for f needs c to be declared e x t e r n a l in the driver c program. c c bound - double precision c finite bound of integration range c (has no meaning if interval is doubly-infinite) c c inf - double precision c indicating the kind of integration range involved c inf = 1 corresponds to (bound,+infinity), c inf = -1 to (-infinity,bound), c inf = 2 to (-infinity,+infinity). c c apar - array of parameters of the integrand function f c c np - number of parameters. size of apar c c epsabs - double precision c absolute accuracy requested c epsrel - double precision c relative accuracy requested c if epsabs.le.0 c and epsrel.lt.max(50*rel.mach.acc.,0.5d-28), c the routine will end with ier = 6. c c limit - integer c gives an upper bound on the number of subintervals c in the partition of (a,b), limit.ge.1 c c on return c result - double precision c approximation to the integral c c abserr - double precision c estimate of the modulus of the absolute error, c which should equal or exceed abs(i-result) c c neval - integer c number of integrand evaluations c c ier - integer c ier = 0 normal and reliable termination of the c routine. it is assumed that the requested c accuracy has been achieved. c - ier.gt.0 abnormal termination of the routine. the c estimates for result and error are less c reliable. it is assumed that the requested c accuracy has not been achieved. c error messages c ier = 1 maximum number of subdivisions allowed c has been achieved. one can allow more c subdivisions by increasing the value of c limit (and taking the according dimension c adjustments into account). however,if c this yields no improvement it is advised c to analyze the integrand in order to c determine the integration difficulties. c if the position of a local difficulty can c be determined (e.g. singularity, c discontinuity within the interval) one c will probably gain from splitting up the c interval at this point and calling the c integrator on the subranges. if possible, c an appropriate special-purpose integrator c should be used, which is designed for c handling the type of difficulty involved. c = 2 the occurrence of roundoff error is c detected, which prevents the requested c tolerance from being achieved. c the error may be under-estimated. c = 3 extremely bad integrand behaviour occurs c at some points of the integration c interval. c = 4 the algorithm does not converge. c roundoff error is detected in the c extrapolation table. c it is assumed that the requested tolerance c cannot be achieved, and that the returned c result is the best which can be obtained. c = 5 the integral is probably divergent, or c slowly convergent. it must be noted that c divergence can occur with any other value c of ier. c = 6 the input is invalid, because c (epsabs.le.0 and c epsrel.lt.max(50*rel.mach.acc.,0.5d-28), c result, abserr, neval, last, rlist(1), c elist(1) and iord(1) are set to zero. c alist(1) and blist(1) are set to 0 c and 1 respectively. c c alist - double precision c vector of dimension at least limit, the first c last elements of which are the left c end points of the subintervals in the partition c of the transformed integration range (0,1). c c blist - double precision c vector of dimension at least limit, the first c last elements of which are the right c end points of the subintervals in the partition c of the transformed integration range (0,1). c c rlist - double precision c vector of dimension at least limit, the first c last elements of which are the integral c approximations on the subintervals c c elist - double precision c vector of dimension at least limit, the first c last elements of which are the moduli of the c absolute error estimates on the subintervals c c iord - integer c vector of dimension limit, the first k c elements of which are pointers to the c error estimates over the subintervals, c such that elist(iord(1)), ..., elist(iord(k)) c form a decreasing sequence, with k = last c if last.le.(limit/2+2), and k = limit+1-last c otherwise c c last - integer c number of subintervals actually produced c in the subdivision process c c***references (none) c***routines called d1mach,dqelg,dqk15imv,dqpsrt c***end prologue dqagiemv double precision abseps,abserr,alist,area,area1,area12,area2,a1, * a2,blist,boun,bound,b1,b2,correc,dabs,defabs,defab1,defab2, * dmax1,dres,d1mach,elist,epmach,epsabs,epsrel,erlarg,erlast, * errbnd,errmax,error1,error2,erro12,errsum,ertest,f,oflow,resabs, * reseps,result,res3la,rlist,rlist2,small,uflow,apar integer id,ier,ierro,inf,iord,iroff1,iroff2,iroff3,jupbnd,k,ksgn, * ktmin,last,limit,maxerr,neval,nres,nrmax,numrl2,np logical extrap,noext c dimension alist(limit),blist(limit),elist(limit),iord(limit), * res3la(3),rlist(limit),rlist2(52),apar(np) c external f c c the dimension of rlist2 is determined by the value of c limexp in subroutine dqelg. c c c list of major variables c ----------------------- c c alist - list of left end points of all subintervals c considered up to now c blist - list of right end points of all subintervals c considered up to now c rlist(i) - approximation to the integral over c (alist(i),blist(i)) c rlist2 - array of dimension at least (limexp+2), c containing the part of the epsilon table c wich is still needed for further computations c elist(i) - error estimate applying to rlist(i) c maxerr - pointer to the interval with largest error c estimate c errmax - elist(maxerr) c erlast - error on the interval currently subdivided c (before that subdivision has taken place) c area - sum of the integrals over the subintervals c errsum - sum of the errors over the subintervals c errbnd - requested accuracy max(epsabs,epsrel* c abs(result)) c *****1 - variable for the left subinterval c *****2 - variable for the right subinterval c last - index for subdivision c nres - number of calls to the extrapolation routine c numrl2 - number of elements currently in rlist2. if an c appropriate approximation to the compounded c integral has been obtained, it is put in c rlist2(numrl2) after numrl2 has been increased c by one. c small - length of the smallest interval considered up c to now, multiplied by 1.5 c erlarg - sum of the errors over the intervals larger c than the smallest interval considered up to now c extrap - logical variable denoting that the routine c is attempting to perform extrapolation. i.e. c before subdividing the smallest interval we c try to decrease the value of erlarg. c noext - logical variable denoting that extrapolation c is no longer allowed (true-value) c c machine dependent constants c --------------------------- c c epmach is the largest relative spacing. c uflow is the smallest positive magnitude. c oflow is the largest positive magnitude. c c***first executable statement dqagie epmach = d1mach(4) c c test on validity of parameters c ----------------------------- c ier = 0 neval = 0 last = 0 result = 0.0d+00 abserr = 0.0d+00 alist(1) = 0.0d+00 blist(1) = 0.1d+01 rlist(1) = 0.0d+00 elist(1) = 0.0d+00 iord(1) = 0 if(epsabs.le.0.0d+00.and.epsrel.lt.dmax1(0.5d+02*epmach,0.5d-28)) * ier = 6 if(ier.eq.6) go to 999 c c c first approximation to the integral c ----------------------------------- c c determine the interval to be mapped onto (0,1). c if inf = 2 the integral is computed as i = i1+i2, where c i1 = integral of f over (-infinity,0), c i2 = integral of f over (0,+infinity). c boun = bound if(inf.eq.2) boun = 0.0d+00 call dqk15imv(f,boun,inf,0.0d+00,0.1d+01,apar,np,result,abserr, * defabs,resabs) c c test on accuracy c last = 1 rlist(1) = result elist(1) = abserr iord(1) = 1 dres = dabs(result) errbnd = dmax1(epsabs,epsrel*dres) if(abserr.le.1.0d+02*epmach*defabs.and.abserr.gt.errbnd) ier = 2 if(limit.eq.1) ier = 1 if(ier.ne.0.or.(abserr.le.errbnd.and.abserr.ne.resabs).or. * abserr.eq.0.0d+00) go to 130 c c initialization c -------------- c uflow = d1mach(1) oflow = d1mach(2) rlist2(1) = result errmax = abserr maxerr = 1 area = result errsum = abserr abserr = oflow nrmax = 1 nres = 0 ktmin = 0 numrl2 = 2 extrap = .false. noext = .false. ierro = 0 iroff1 = 0 iroff2 = 0 iroff3 = 0 ksgn = -1 if(dres.ge.(0.1d+01-0.5d+02*epmach)*defabs) ksgn = 1 c c main do-loop c ------------ c do 90 last = 2,limit c c bisect the subinterval with nrmax-th largest error estimate. c a1 = alist(maxerr) b1 = 0.5d+00*(alist(maxerr)+blist(maxerr)) a2 = b1 b2 = blist(maxerr) erlast = errmax call dqk15imv(f,boun,inf,a1,b1,apar,np,area1,error1,resabs, * defab1) call dqk15imv(f,boun,inf,a2,b2,apar,np,area2,error2,resabs, * defab2) c c improve previous approximations to integral c and error and test for accuracy. c area12 = area1+area2 erro12 = error1+error2 errsum = errsum+erro12-errmax area = area+area12-rlist(maxerr) if(defab1.eq.error1.or.defab2.eq.error2)go to 15 if(dabs(rlist(maxerr)-area12).gt.0.1d-04*dabs(area12) * .or.erro12.lt.0.99d+00*errmax) go to 10 if(extrap) iroff2 = iroff2+1 if(.not.extrap) iroff1 = iroff1+1 10 if(last.gt.10.and.erro12.gt.errmax) iroff3 = iroff3+1 15 rlist(maxerr) = area1 rlist(last) = area2 errbnd = dmax1(epsabs,epsrel*dabs(area)) c c test for roundoff error and eventually set error flag. c if(iroff1+iroff2.ge.10.or.iroff3.ge.20) ier = 2 if(iroff2.ge.5) ierro = 3 c c set error flag in the case that the number of c subintervals equals limit. c if(last.eq.limit) ier = 1 c c set error flag in the case of bad integrand behaviour c at some points of the integration range. c if(dmax1(dabs(a1),dabs(b2)).le.(0.1d+01+0.1d+03*epmach)* * (dabs(a2)+0.1d+04*uflow)) ier = 4 c c append the newly-created intervals to the list. c if(error2.gt.error1) go to 20 alist(last) = a2 blist(maxerr) = b1 blist(last) = b2 elist(maxerr) = error1 elist(last) = error2 go to 30 20 alist(maxerr) = a2 alist(last) = a1 blist(last) = b1 rlist(maxerr) = area2 rlist(last) = area1 elist(maxerr) = error2 elist(last) = error1 c c call subroutine dqpsrt to maintain the descending ordering c in the list of error estimates and select the subinterval c with nrmax-th largest error estimate (to be bisected next). c 30 call dqpsrt(limit,last,maxerr,errmax,elist,iord,nrmax) if(errsum.le.errbnd) go to 115 if(ier.ne.0) go to 100 if(last.eq.2) go to 80 if(noext) go to 90 erlarg = erlarg-erlast if(dabs(b1-a1).gt.small) erlarg = erlarg+erro12 if(extrap) go to 40 c c test whether the interval to be bisected next is the c smallest interval. c if(dabs(blist(maxerr)-alist(maxerr)).gt.small) go to 90 extrap = .true. nrmax = 2 40 if(ierro.eq.3.or.erlarg.le.ertest) go to 60 c c the smallest interval has the largest error. c before bisecting decrease the sum of the errors over the c larger intervals (erlarg) and perform extrapolation. c id = nrmax jupbnd = last if(last.gt.(2+limit/2)) jupbnd = limit+3-last do 50 k = id,jupbnd maxerr = iord(nrmax) errmax = elist(maxerr) if(dabs(blist(maxerr)-alist(maxerr)).gt.small) go to 90 nrmax = nrmax+1 50 continue c c perform extrapolation. c 60 numrl2 = numrl2+1 rlist2(numrl2) = area call dqelg(numrl2,rlist2,reseps,abseps,res3la,nres) ktmin = ktmin+1 if(ktmin.gt.5.and.abserr.lt.0.1d-02*errsum) ier = 5 if(abseps.ge.abserr) go to 70 ktmin = 0 abserr = abseps result = reseps correc = erlarg ertest = dmax1(epsabs,epsrel*dabs(reseps)) if(abserr.le.ertest) go to 100 c c prepare bisection of the smallest interval. c 70 if(numrl2.eq.1) noext = .true. if(ier.eq.5) go to 100 maxerr = iord(1) errmax = elist(maxerr) nrmax = 1 extrap = .false. small = small*0.5d+00 erlarg = errsum go to 90 80 small = 0.375d+00 erlarg = errsum ertest = errbnd rlist2(2) = area 90 continue c c set final result and error estimate. c ------------------------------------ c 100 if(abserr.eq.oflow) go to 115 if((ier+ierro).eq.0) go to 110 if(ierro.eq.3) abserr = abserr+correc if(ier.eq.0) ier = 3 if(result.ne.0.0d+00.and.area.ne.0.0d+00)go to 105 if(abserr.gt.errsum)go to 115 if(area.eq.0.0d+00) go to 130 go to 110 105 if(abserr/dabs(result).gt.errsum/dabs(area))go to 115 c c test on divergence c 110 if(ksgn.eq.(-1).and.dmax1(dabs(result),dabs(area)).le. * defabs*0.1d-01) go to 130 if(0.1d-01.gt.(result/area).or.(result/area).gt.0.1d+03. *or.errsum.gt.dabs(area)) ier = 6 go to 130 c c compute global integral sum. c 115 result = 0.0d+00 do 120 k = 1,last result = result+rlist(k) 120 continue abserr = errsum 130 neval = 30*last-15 if(inf.eq.2) neval = 2*neval if(ier.gt.2) ier=ier-1 999 return end c subroutine dqk15imv(f,boun,inf,a,b,apar,np,result,abserr,resabs, * resasc) c***begin prologue dqk15imv c***date written 800101 (yymmdd) c***revision date 830518 (yymmdd) c***category no. h2a3a2,h2a4a2 c***keywords 15-point transformed gauss-kronrod rules c***author piessens,robert,appl. math. & progr. div. - k.u.leuven c de doncker,elise,appl. math. & progr. div. - k.u.leuven c***purpose the original (infinite integration range is mapped c onto the interval (0,1) and (a,b) is a part of (0,1). c it is the purpose to compute c i = integral of transformed integrand over (a,b), c j = integral of abs(transformed integrand) over (a,b). c***description c c integration rule c standard fortran subroutine c double precision version c c parameters c on entry c f - double precision c fuction subprogram defining the integrand c function f(x,apar,np). the actual name for f c needs to be declared e x t e r n a l in the c calling program. c c boun - double precision c finite bound of original integration c range (set to zero if inf = +2) c c inf - integer c if inf = -1, the original interval is c (-infinity,bound), c if inf = +1, the original interval is c (bound,+infinity), c if inf = +2, the original interval is c (-infinity,+infinity) and c the integral is computed as the sum of two c integrals, one over (-infinity,0) and one over c (0,+infinity). c c a - double precision c lower limit for integration over subrange c of (0,1) c c b - double precision c upper limit for integration over subrange c of (0,1) c c apar - array of parameters of the integrand function f c c np - number of parameters. size of apar c c on return c result - double precision c approximation to the integral i c result is computed by applying the 15-point c kronrod rule(resk) obtained by optimal addition c of abscissae to the 7-point gauss rule(resg). c c abserr - double precision c estimate of the modulus of the absolute error, c which should equal or exceed abs(i-result) c c resabs - double precision c approximation to the integral j c c resasc - double precision c approximation to the integral of c abs((transformed integrand)-i/(b-a)) over (a,b) c c***references (none) c***routines called d1mach c***end prologue dqk15imv c double precision a,absc,absc1,absc2,abserr,b,boun,centr,dabs,dinf, * dmax1,dmin1,d1mach,epmach,f,fc,fsum,fval1,fval2,fv1,fv2,hlgth, * resabs,resasc,resg,resk,reskh,result,tabsc1,tabsc2,uflow,wg,wgk, * xgk,apar integer inf,j,np external f c dimension fv1(7),fv2(7),xgk(8),wgk(8),wg(8),apar(np) c c the abscissae and weights are supplied for the interval c (-1,1). because of symmetry only the positive abscissae and c their corresponding weights are given. c c xgk - abscissae of the 15-point kronrod rule c xgk(2), xgk(4), ... abscissae of the 7-point c gauss rule c xgk(1), xgk(3), ... abscissae which are optimally c added to the 7-point gauss rule c c wgk - weights of the 15-point kronrod rule c c wg - weights of the 7-point gauss rule, corresponding c to the abscissae xgk(2), xgk(4), ... c wg(1), wg(3), ... are set to zero. c data wg(1) / 0.0d0 / data wg(2) / 0.1294849661 6886969327 0611432679 082d0 / data wg(3) / 0.0d0 / data wg(4) / 0.2797053914 8927666790 1467771423 780d0 / data wg(5) / 0.0d0 / data wg(6) / 0.3818300505 0511894495 0369775488 975d0 / data wg(7) / 0.0d0 / data wg(8) / 0.4179591836 7346938775 5102040816 327d0 / c data xgk(1) / 0.9914553711 2081263920 6854697526 329d0 / data xgk(2) / 0.9491079123 4275852452 6189684047 851d0 / data xgk(3) / 0.8648644233 5976907278 9712788640 926d0 / data xgk(4) / 0.7415311855 9939443986 3864773280 788d0 / data xgk(5) / 0.5860872354 6769113029 4144838258 730d0 / data xgk(6) / 0.4058451513 7739716690 6606412076 961d0 / data xgk(7) / 0.2077849550 0789846760 0689403773 245d0 / data xgk(8) / 0.0000000000 0000000000 0000000000 000d0 / c data wgk(1) / 0.0229353220 1052922496 3732008058 970d0 / data wgk(2) / 0.0630920926 2997855329 0700663189 204d0 / data wgk(3) / 0.1047900103 2225018383 9876322541 518d0 / data wgk(4) / 0.1406532597 1552591874 5189590510 238d0 / data wgk(5) / 0.1690047266 3926790282 6583426598 550d0 / data wgk(6) / 0.1903505780 6478540991 3256402421 014d0 / data wgk(7) / 0.2044329400 7529889241 4161999234 649d0 / data wgk(8) / 0.2094821410 8472782801 2999174891 714d0 / c c c list of major variables c ----------------------- c c centr - mid point of the interval c hlgth - half-length of the interval c absc* - abscissa c tabsc* - transformed abscissa c fval* - function value c resg - result of the 7-point gauss formula c resk - result of the 15-point kronrod formula c reskh - approximation to the mean value of the transformed c integrand over (a,b), i.e. to i/(b-a) c c machine dependent constants c --------------------------- c c epmach is the largest relative spacing. c uflow is the smallest positive magnitude. c c***first executable statement dqk15imv epmach = d1mach(4) uflow = d1mach(1) dinf = min0(1,inf) c centr = 0.5d+00*(a+b) hlgth = 0.5d+00*(b-a) tabsc1 = boun+dinf*(0.1d+01-centr)/centr fval1 = f(tabsc1,apar,np) if(inf.eq.2) fval1 = fval1+f(-tabsc1,apar,np) fc = (fval1/centr)/centr c c compute the 15-point kronrod approximation to c the integral, and estimate the error. c resg = wg(8)*fc resk = wgk(8)*fc resabs = dabs(resk) do 10 j=1,7 absc = hlgth*xgk(j) absc1 = centr-absc absc2 = centr+absc tabsc1 = boun+dinf*(0.1d+01-absc1)/absc1 tabsc2 = boun+dinf*(0.1d+01-absc2)/absc2 fval1 = f(tabsc1,apar,np) fval2 = f(tabsc2,apar,np) if(inf.eq.2) fval1 = fval1+f(-tabsc1,apar,np) if(inf.eq.2) fval2 = fval2+f(-tabsc2,apar,np) fval1 = (fval1/absc1)/absc1 fval2 = (fval2/absc2)/absc2 fv1(j) = fval1 fv2(j) = fval2 fsum = fval1+fval2 resg = resg+wg(j)*fsum resk = resk+wgk(j)*fsum resabs = resabs+wgk(j)*(dabs(fval1)+dabs(fval2)) 10 continue reskh = resk*0.5d+00 resasc = wgk(8)*dabs(fc-reskh) do 20 j=1,7 resasc = resasc+wgk(j)*(dabs(fv1(j)-reskh)+dabs(fv2(j)-reskh)) 20 continue result = resk*hlgth resasc = resasc*hlgth resabs = resabs*hlgth abserr = dabs((resk-resg)*hlgth) if(resasc.ne.0.0d+00.and.abserr.ne.0.d0) abserr = resasc* * dmin1(0.1d+01,(0.2d+03*abserr/resasc)**1.5d+00) if(resabs.gt.uflow/(0.5d+02*epmach)) abserr = dmax1 * ((epmach*0.5d+02)*resabs,abserr) return end