This methods ensures n_e(ψ) is everywhere positive and C²-continuous.
The density boundary is now dependent on the width w of the mollifier,
which also controls the smoothness of the curve, specifically:
ψ_bnd = ψ_last + w
where ψ_last = 1.01 currently is an extra point added to improve the
convergence of the mollified density to the original data as w→0.
This was the final module with global variables to be rewritten.
The functionaly of pec: `pec_init`, `spec`, `postproc_profiles` has been
replaced by the `ray_projector` object in `gray_project.f90` with the
following methods: `projector%init`, `projector%project` and
`projector%statistics`.
The new code is functionally identically with only breaking change being
in Δρ_J, the full-width at max/e of the current density.
Before this change Δρ_J could be negative to signal the J_φ profile had
at least one positive and one negative peak, after the value is always
positive. Note: in either case Δρ_J was given by the largest peak only.
- Replace the `get_free_unit` subroutine with the built-in
`newutin` option of the `open` statement.
- Replace `locatex` with just `locate` + an index offset.
- Replace `inside` with `contour%contains`.
- Merge `vmaxmin` and `vmaxmini` into a single subroutine
with optional arguments.
- Remove unused `range2rect`, `bubble`.
Similarly to eb648039 this change replaces the `equilibrium` module with
a new `gray_equil` module providing the same functionality without using
global variables.
- `read_eqdsk`, `read_equil_an` are replaced by a single `load_equil`
routine that handles all equilibrium kind (analytical, numerical,
and vacuum).
- `scale_equil` is merged into `load_equil`, which besides reading
the equilibrium from file peforms the rescaling and interpolation based
on the `gray_parameters` settings and the equilibrium kind.
To operate on G-EQDSK data specifically, the `change_cocors` and
`scale_eqdsk` are still available. The numeric equilibrium must then
be initialised manually by calling equil%init().
- `set_equil_spline`, `set_equil_an`, `unset_equil_spline`
are completely removed as the module no longer has any internal state.
- `fq` is replaced by `equil%safety`; `bfield` by `equil%b_field`;
`frhotor`, `frhopol` by `equil%pol2tor` and `equil%pol2tor`;
and the remaining subroutines by other methods of `abstract_equil`
retaining the old name.
- the `contours_psi` subroutine is replaced by `equil%flux_contour`,
with a slightly changed invocation but same functionality.
- the `gray_data` type is no longer required ans has been removed: all
the core subroutines now access the input data only though either
`abstract_equil`, `abstract_plasma` or the `limiter` contour.
1. Use the `contour` type for limiter and plasma boundary
(rlim, zlim, rbnd, zbnd)
2. Replace `inside` with `contour%contains`
3. Replace `range2rect` with a `contour` interface
4. Remove the limiter module which just re-exports the limiter
as a global; instead just pass the contour object around
This change replaces the output files (Fortran units) with a derived
type called table, that hold the data in memory until further
processing. The data stored in a table can be dumped to a file, as
before, or processed in other ways, for example converted to other
derived type.
This change replaces pointers with automatic arrays to greatly simplify
the memory management in the main subroutine:
- All arrays are defined in a single location and with their final
dimension explicitely shown.
- The allocation/deallocation is performed automatically when
entering/leaving the gray_main routine.
1. Introduces enumerations (and some booleans) intended to replace all
the magic numbers used throughout the code to represent multiple
choices.
2. Replace the gray_params.sh script a new one that automatically
generates code for all the GRAY parameters by parsing
gray_params.f90.
3. Also generate extra code to accept the enum identifiers as valid
values in the configuration files and command line arguments.
4. Set sensible default values for parameters that are rarely changes.
This adds a new configuration file based on the INI format.
The new format will allow adding GRAY parameters without breaking
compatibility with existing configurations, unlike as of the old
gray_params.data.
This change structures the arguments of most functions, in particular
gray_main, into well-defined categories using derived types.
All types are defined in the gray_params.f90 (location subject to
change) and are organised as follows:
gray_parameters (statically allocated data)
├── antenna_parameters
├── ecrh_cd_parameters
├── equilibrium_parameters
├── misc_parameters
├── output_parameters
├── profiles_parameters
└── raytracing_parameters
gray_data - inputs of gray_main (dynamically-allocated arrays)
├── equilibrium_data
└── profiles_data
gray_results - outputs of gray_main (dynamically-allocated arrays)