src/equilibrium.f90: re-introduce ρ_t(R,z) mapping

Directly mapping r(R,z) to ρ_p greatly simplifies the implementation of
pol_flux, but also produces a weird current profile and resonance curve.

This keeps the previous changes to the model but reverts the mapping to
the previous one: r → ρ_t.
This commit is contained in:
Michele Guerini Rocco 2023-12-06 17:26:21 +01:00
parent 24edfdc43a
commit 9a301f5799
Signed by: rnhmjoj
GPG Key ID: BFBAF4C975F76450

View File

@ -782,7 +782,27 @@ contains
zmxm = zbsup zmxm = zbsup
zmnm = zbinf zmnm = zbinf
! FIXME: it should be that Φ(r) = Bπr² 1/(1-ε²)
! where ε=r/R is the tokamak aspect ratio
phitedge = model%B0 * pi * model%a**2 phitedge = model%B0 * pi * model%a**2
! In cocos=3 the safety factor is
!
! q(ψ) = 1/2π Φ/ψ.
!
! Given the power law of the model
!
! q(ψ) = q + (q-q) (ψ/ψa)^(α/2),
!
! we can find ψ_a = ψ(r=a) by integrating:
!
! q(ψ) = 1/2π
! ^ψ_a q(ψ) = 1/2π Φ_a
! ψa [q + (q-q)/(α/2+1)] = Φa/2π
!
! ψ_a = Φ_a 1/2π 1/(q + Δq)
!
! where Δq = (q - q)/(α/2 + 1)
dq = (model%q1 - model%q0) / (model%alpha/2 + 1) dq = (model%q1 - model%q0) / (model%alpha/2 + 1)
psia = 1/(2*pi) * phitedge / (model%q0 + dq) psia = 1/(2*pi) * phitedge / (model%q0 + dq)
end subroutine set_equil_an end subroutine set_equil_an
@ -818,26 +838,70 @@ contains
ddpsidrr, ddpsidzz, ddpsidrz ddpsidrr, ddpsidzz, ddpsidrz
! local variables ! local variables
real(wp_) :: r_p ! poloidal radius real(wp_) :: rho_t, rho_p ! Φ_n, ψ_n
real(wp_) :: rho_p ! poloidal radius normalised real(wp_) :: dpsidphi ! (ψ_n/Φ_n)
real(wp_) :: ddpsidphidr, ddpsidphidz ! (ψ_n/Φ_n)
real(wp_) :: dphidr, dphidz ! Φ_n
real(wp_) :: q, dq ! q(ρ_p), Δq=(q-q)/(α/2 + 1)
real(wp_) :: dqdr, dqdz ! q
if (iequil < 2) then if (iequil < 2) then
! Analytical model ! Analytical model
! ρ_p is just the geometrical poloidal radius divided by a
r_p = hypot(R - model%R0, z - model%z0)
rho_p = r_p / model%a
! ψ_n = ρ_p²(R,z) = [(R-R)² + (z-z)²]/a² ! ρ_t is mapped to the normalised geometrical radius,
! so ρ_t = [(R-R)² + (z-z)²]/a and ρ_p(ρ_t)
rho_t = hypot(R - model%R0, z - model%z0)/model%a
rho_p = frhopol(rho_t)
! ψ_n = ρ_p(ρ_t)²
if (present(psi_n)) psi_n = rho_p**2 if (present(psi_n)) psi_n = rho_p**2
! ψ_n/R, ψ_n/z ! Using the definitions in `frhotor`:
if (present(dpsidr)) dpsidr = 2*(R - model%R0)/model%a**2 !
if (present(dpsidz)) dpsidz = 2*(z - model%z0)/model%a**2 ! ψ_n = ψ_n/Φ_n Φ_n
!
! ψ_n/Φ_n = Φ_a/ψ_a ψ/Φ
! = Φ_a/ψ_a 1/2πq
!
! Using ψ_a = 1/2π Φ_a / (q + Δq), then:
!
! ψ_n/Φ_n = (q + Δq)/q
!
q = model%q0 + (model%q1 - model%q0) * rho_p**model%alpha
dq = (model%q1 - model%q0) / (model%alpha/2 + 1)
dpsidphi = (model%q0 + dq) / q
! ²ψ_n/R², ²ψ_n/z², ²ψ_n/Rz ! Since Φ_n = ρ_t²(R,z): Φ_n = 2/a² [R-R, z-z]
if (present(ddpsidrr)) ddpsidrr = 2/model%a**2 dphidr = 2*(R - model%R0)/model%a**2
if (present(ddpsidzz)) ddpsidzz = 2/model%a**2 dphidz = 2*(z - model%z0)/model%a**2
if (present(ddpsidrz)) ddpsidrz = 0
! Using the above, ψ_n = ψ_n/Φ_n Φ_n
if (present(dpsidr)) dpsidr = dpsidphi * dphidr
if (present(dpsidz)) dpsidz = dpsidphi * dphidz
! For the second derivatives:
!
! ψ_n = (ψ_n/Φ_n) Φ_n + (ψ_n/Φ_n) Φ_n
!
! (ψ_n/Φ_n) = - (ψ_n/Φ_n) q/q
!
! From q(ψ) = q + (q-q) ψ_n^α/2, we have:
!
! q = α/2 (q-q) ψ_n/ψ_n
! = α/2 (q-q)/ψ_n (ψ_n/Φ_n) Φ_n.
!
dqdr = model%alpha/2 * (q - model%q0)/rho_p**2 * dpsidphi * dphidr
dqdz = model%alpha/2 * (q - model%q0)/rho_p**2 * dpsidphi * dphidz
ddpsidphidr = - dpsidphi * dqdr/q
ddpsidphidz = - dpsidphi * dqdz/q
! Finally, Φ_n = ρ_t²(R,z) = 2/a² I, so:
!
! ψ_n = (ψ_n/Φ_n) Φ_n + (ψ_n/Φ_n) 2/a² I
!
if (present(ddpsidrr)) ddpsidrr = ddpsidphidr * dphidr + dpsidphi * 2/model%a**2
if (present(ddpsidzz)) ddpsidzz = ddpsidphidz * dphidz + dpsidphi * 2/model%a**2
if (present(ddpsidrz)) ddpsidrz = ddpsidphidr * dphidz
else else
! Numerical data ! Numerical data
if (R <= rmxm .and. R >= rmnm .and. & if (R <= rmxm .and. R >= rmnm .and. &