src/gray_core.f90: print_* do not depend on q_spline
This changes all the print_* subroutines to not depend on q_spline, either for the ψ data points or just their number. In fact, in the new analytical model q_spline doesn't exist anymore. Pro: This allows to mark q_spline as private.
This commit is contained in:
parent
8d86d70e91
commit
24edfdc43a
@ -47,7 +47,7 @@ module equilibrium
|
||||
real(wp_), save :: rcen ! Major radius R₀, computed as fpolas/btrcen
|
||||
real(wp_), save :: rmnm, rmxm ! R interval of the equilibrium definition
|
||||
real(wp_), save :: zmnm, zmxm ! z interval of the equilibrium definition
|
||||
real(wp_), save :: zbinf, zbsup
|
||||
real(wp_), save :: zbinf, zbsup ! z interval of the plasma boundary
|
||||
|
||||
private
|
||||
public read_eqdsk, read_equil_an ! Reading data files
|
||||
@ -59,7 +59,7 @@ module equilibrium
|
||||
public unset_equil_spline ! Deinitialising internal state
|
||||
|
||||
! Members exposed for magsurf_data
|
||||
public kspl, psi_spline, q_spline, points_tgo, model
|
||||
public kspl, psi_spline, points_tgo, model
|
||||
|
||||
! Members exposed to gray_core and more
|
||||
public psia, phitedge
|
||||
@ -1099,9 +1099,13 @@ contains
|
||||
real(wp_), intent(in) :: psi_n
|
||||
real(wp_) :: J_phi
|
||||
|
||||
! local constants
|
||||
real(wp_), parameter :: eps = 1.e-4_wp_
|
||||
|
||||
! local variables
|
||||
real(wp_) :: R1, R2
|
||||
call psi_raxis(psi_n, R1, R2)
|
||||
|
||||
call psi_raxis(max(eps, psi_n), R1, R2)
|
||||
J_phi = tor_curr(R2, zmaxis)
|
||||
end function tor_curr_psi
|
||||
|
||||
|
@ -2175,50 +2175,34 @@ bb: do
|
||||
! Prints the (input) plasma kinetic profiles (unit 55)
|
||||
|
||||
use gray_params, only : profiles_parameters
|
||||
use equilibrium, only : q_spline, fq, frhotor, tor_curr_psi
|
||||
use equilibrium, only : fq, frhotor, tor_curr_psi
|
||||
use coreprofiles, only : density, temp
|
||||
use units, only : uprfin, unit_active
|
||||
use magsurf_data, only : npsi
|
||||
|
||||
implicit none
|
||||
|
||||
! suborutine arguments
|
||||
type(profiles_parameters), intent(in) :: params
|
||||
|
||||
! local constants
|
||||
real(wp_), parameter :: eps = 1.e-4_wp_
|
||||
|
||||
! local variables
|
||||
integer :: i, N_data, N_tail
|
||||
real(wp_) :: rhot, jphi, dens, ddens
|
||||
real(wp_) :: psin, dpsin, psin_last
|
||||
integer :: i
|
||||
real(wp_) :: rho_t, J_phi, dens, ddens
|
||||
real(wp_) :: psi_n, dpsi_n
|
||||
|
||||
if (.not. unit_active(uprfin)) return
|
||||
|
||||
! N of profiles data points
|
||||
N_data = q_spline%ndata
|
||||
|
||||
! parameters for the density tail (numerical profiles only)
|
||||
if (params%iprof == 1) then
|
||||
N_tail = N_data / 10 ! N of density tail points
|
||||
psin_last = q_spline%data(N_data) ! last data point
|
||||
dpsin = (params%psnbnd - psin_last) / N_tail ! Δψ for uniform grid
|
||||
else
|
||||
N_tail = 0
|
||||
end if
|
||||
! Δψ for the uniform ψ grid
|
||||
dpsi_n = params%psnbnd / (npsi - 1)
|
||||
|
||||
write (uprfin, *) '#psi rhot ne Te q Jphi'
|
||||
do i = 1, N_data + N_tail
|
||||
if (i > N_data) then
|
||||
psin = psin_last + dpsin*(i - N_data)
|
||||
else
|
||||
psin = q_spline%data(i)
|
||||
end if
|
||||
rhot = frhotor(sqrt(psin))
|
||||
call density(psin, dens, ddens)
|
||||
jphi = tor_curr_psi(max(eps, psin))
|
||||
|
||||
do i = 0, npsi - 1
|
||||
psi_n = dpsi_n * i
|
||||
rho_t = frhotor(sqrt(psi_n))
|
||||
J_phi = tor_curr_psi(psi_n)
|
||||
call density(psi_n, dens, ddens)
|
||||
write (uprfin, '(12(1x,e12.5))') &
|
||||
psin, rhot, dens, temp(psin), fq(psin), jphi*1.e-6_wp_
|
||||
psi_n, rho_t, dens, temp(psi_n), fq(psi_n), J_phi*1.e-6_wp_
|
||||
end do
|
||||
end subroutine print_prof
|
||||
|
||||
@ -2226,8 +2210,9 @@ bb: do
|
||||
subroutine print_bres(bres)
|
||||
! Prints the EC resonance surface table (unit 70)
|
||||
|
||||
use equilibrium, only : rmnm, rmxm, zmnm, zmxm, bfield, q_spline
|
||||
use equilibrium, only : rmnm, rmxm, zmnm, zmxm, bfield
|
||||
use units, only : ubres, unit_active
|
||||
use magsurf_data, only : npsi
|
||||
|
||||
implicit none
|
||||
|
||||
@ -2242,14 +2227,15 @@ bb: do
|
||||
integer, dimension(10) :: ncpts
|
||||
real(wp_) :: dr,dz,btmx,btmn,zzk,rrj,bbphi,bbr,bbz,bbb
|
||||
real(wp_), dimension(icmx) :: rrcb,zzcb
|
||||
real(wp_) :: rv(q_spline%ndata), zv(q_spline%ndata)
|
||||
real(wp_), dimension(q_spline%ndata,q_spline%ndata) :: btotal
|
||||
real(wp_) :: rv(npsi), zv(npsi)
|
||||
real(wp_), dimension(npsi,npsi) :: btotal
|
||||
|
||||
if (.not. unit_active(ubres)) return
|
||||
|
||||
dr = (rmxm - rmnm)/(q_spline%ndata - 1)
|
||||
dz = (zmxm - zmnm)/(q_spline%ndata - 1)
|
||||
do j=1,q_spline%ndata
|
||||
! Build a regular (R, z) grid
|
||||
dr = (rmxm - rmnm)/(npsi - 1)
|
||||
dz = (zmxm - zmnm)/(npsi - 1)
|
||||
do j=1,npsi
|
||||
rv(j) = rmnm + dr*(j - 1)
|
||||
zv(j) = zmnm + dz*(j - 1)
|
||||
end do
|
||||
@ -2257,9 +2243,9 @@ bb: do
|
||||
! Btotal on psi grid
|
||||
btmx = -1.0e30_wp_
|
||||
btmn = 1.0e30_wp_
|
||||
do k = 1, q_spline%ndata
|
||||
do k = 1, npsi
|
||||
zzk = zv(k)
|
||||
do j = 1, q_spline%ndata
|
||||
do j = 1, npsi
|
||||
rrj = rv(j)
|
||||
call bfield(rrj, zzk, bbr, bbz, bbphi)
|
||||
btotal(j,k) = sqrt(bbr**2 + bbz**2 + bbphi**2)
|
||||
@ -2275,7 +2261,7 @@ bb: do
|
||||
if (bbb >= btmn .and. bbb <= btmx) then
|
||||
nconts = size(ncpts)
|
||||
nctot = size(rrcb)
|
||||
call cniteq(rv, zv, btotal, q_spline%ndata, q_spline%ndata, bbb, &
|
||||
call cniteq(rv, zv, btotal, npsi, npsi, bbb, &
|
||||
nconts, ncpts, nctot, rrcb, zzcb)
|
||||
do j = 1, nctot
|
||||
write (ubres, '(i6,12(1x,e12.5))') j, bbb, rrcb(j), zzcb(j)
|
||||
@ -2287,52 +2273,51 @@ bb: do
|
||||
end subroutine print_bres
|
||||
|
||||
|
||||
subroutine print_maps(bres, xgcn, r0, anpl0)
|
||||
subroutine print_maps(B_res, xgcn, R0, Npl0)
|
||||
! Prints several input quantities on a regular grid (unit 72)
|
||||
|
||||
use equilibrium, only : rmnm, rmxm, zmnm, zmxm, &
|
||||
pol_flux, pol_curr, q_spline
|
||||
use equilibrium, only : rmnm, rmxm, zmnm, zmxm, pol_flux, bfield
|
||||
use coreprofiles, only : density, temp
|
||||
use units, only : umaps, unit_active
|
||||
use magsurf_data, only : npsi
|
||||
|
||||
implicit none
|
||||
|
||||
! subroutine arguments
|
||||
real(wp_), intent(in) :: bres,xgcn,r0,anpl0
|
||||
real(wp_), intent(in) :: B_res ! resonant magnetic field, e/m_eω
|
||||
real(wp_), intent(in) :: xgcn ! X normalisation, e²/ε₀m_eω²
|
||||
real(wp_), intent(in) :: R0 ! initial value of R
|
||||
real(wp_), intent(in) :: Npl0 ! initial value of N∥
|
||||
|
||||
! local variables
|
||||
integer :: j,k
|
||||
real(wp_) :: dr, dz, zk, rj, bphi, br, bz, btot, &
|
||||
psin, ne, dne, te, xg, yg, anpl
|
||||
real(wp_), dimension(q_spline%ndata) :: r, z
|
||||
integer :: j, k
|
||||
real(wp_) :: dR, dz, B_R, B_phi, B_z, B
|
||||
real(wp_) :: psi_n, ne, dne, Te, X, Y, Npl
|
||||
real(wp_), dimension(npsi) :: R, z
|
||||
|
||||
if (.not. unit_active(umaps)) return
|
||||
|
||||
dr = (rmxm-rmnm)/(q_spline%ndata - 1)
|
||||
dz = (zmxm-zmnm)/(q_spline%ndata - 1)
|
||||
do j=1,q_spline%ndata
|
||||
r(j) = rmnm + dr*(j - 1)
|
||||
! Build a regular (R, z) grid
|
||||
dR = (rmxm - rmnm)/(npsi - 1)
|
||||
dz = (zmxm - zmnm)/(npsi - 1)
|
||||
do j = 1, npsi
|
||||
R(j) = rmnm + dR*(j - 1)
|
||||
z(j) = zmnm + dz*(j - 1)
|
||||
end do
|
||||
|
||||
write (umaps, *) '#R z psin Br Bphi Bz Btot ne Te X Y Npl'
|
||||
do j = 1, q_spline%ndata
|
||||
rj = r(j)
|
||||
anpl = anpl0 * r0/rj
|
||||
do k = 1, q_spline%ndata
|
||||
zk = z(k)
|
||||
call pol_flux(rj, zk, psin, dpsidr=bz, dpsidz=br)
|
||||
call pol_curr(psin, fpol=bphi)
|
||||
br = -br/rj
|
||||
bphi = bphi/rj
|
||||
bz = bz/rj
|
||||
btot = sqrt(br**2 + bphi**2 + bz**2)
|
||||
yg = btot/bres
|
||||
te = temp(psin)
|
||||
call density(psin, ne, dne)
|
||||
xg = xgcn*ne
|
||||
do j = 1, npsi
|
||||
Npl = Npl0 * R0/r(j)
|
||||
do k = 1, npsi
|
||||
call pol_flux(r(j), z(k), psi_n)
|
||||
call bfield(r(j), z(k), B_R, B_z, B_phi)
|
||||
call density(psi_n, ne, dne)
|
||||
B = sqrt(B_R**2 + B_phi**2 + B_z**2)
|
||||
X = xgcn*ne
|
||||
Y = B/B_res
|
||||
Te = temp(psi_n)
|
||||
write (umaps,'(12(x,e12.5))') &
|
||||
rj, zk, psin, br, bphi, bz, btot, ne, te, xg, yg, anpl
|
||||
R(j), z(k), psi_n, B_R, B_phi, B_z, B, ne, Te, X, Y, Npl
|
||||
end do
|
||||
write (umaps,*)
|
||||
end do
|
||||
@ -2340,54 +2325,94 @@ bb: do
|
||||
end subroutine print_maps
|
||||
|
||||
|
||||
subroutine print_surfq(qval)
|
||||
! Print constant ψ surfaces for a given `q` value
|
||||
subroutine print_surfq(qvals)
|
||||
! Prints the constant ψ surfaces for a set of values of q
|
||||
|
||||
use equilibrium, only : q_spline, fq, frhotor, &
|
||||
rmaxis, zmaxis, zbsup, zbinf
|
||||
use equilibrium, only : fq, frhotor, rmaxis, zmaxis, zbsup, zbinf
|
||||
use magsurf_data, only : contours_psi, npoints, print_contour
|
||||
use utils, only : locate, intlin
|
||||
use logger, only : log_info
|
||||
use minpack, only : hybrj1
|
||||
|
||||
implicit none
|
||||
|
||||
! subroutine arguments
|
||||
real(wp_), dimension(:), intent(in) :: qval
|
||||
real(wp_), intent(in) :: qvals(:)
|
||||
|
||||
! local variables
|
||||
integer :: i1,i
|
||||
real(wp_) :: rup,zup,rlw,zlw,rhot,psival
|
||||
real(wp_), dimension(npoints) :: rcn,zcn
|
||||
real(wp_), dimension(q_spline%ndata) :: qpsi
|
||||
integer :: i
|
||||
real(wp_) :: rho_t, rho_p, psi_n
|
||||
character(256) :: msg ! for log messages formatting
|
||||
|
||||
! build the q profile on the ψ grid
|
||||
do i = 1, q_spline%ndata
|
||||
qpsi(i) = fq(q_spline%data(i))
|
||||
end do
|
||||
|
||||
! locate ψ surface for q=qval
|
||||
call log_info('constant ψ surfaces for:', &
|
||||
mod='gray_core', proc='print_surfq')
|
||||
do i=1, size(qval)
|
||||
! FIXME: check for non monotonous q profile
|
||||
call locate(abs(qpsi), q_spline%ndata, qval(i), i1)
|
||||
if (i1 > 0 .and. i1 < q_spline%ndata) then
|
||||
call intlin(abs(qpsi(i1)), q_spline%data(i1), abs(qpsi(i1+1)), &
|
||||
q_spline%data(i1+1), qval(i), psival)
|
||||
rup = rmaxis
|
||||
rlw = rmaxis
|
||||
zup = (zbsup + zmaxis)/2.0_wp_
|
||||
zlw = (zmaxis + zbinf)/2.0_wp_
|
||||
call contours_psi(psival, rcn, zcn, rup, zup, rlw, zlw)
|
||||
call print_contour(psival, rcn, zcn)
|
||||
rhot = frhotor(sqrt(psival))
|
||||
write (msg, '(4(x,a,"=",g0.3))') &
|
||||
'q', qval(i), 'ψ', psival, 'rhop', sqrt(psival), 'rhot', rhot
|
||||
call log_info(msg, mod='gray_core', proc='print_surfq')
|
||||
end if
|
||||
do i = 1, size(qvals)
|
||||
! Find value of ψ_n for the current q
|
||||
block
|
||||
real(wp_) :: sol(1), fvec(1), fjac(1,1), wa(7)
|
||||
integer :: info
|
||||
|
||||
! Note: since we are mostly interested in q=3/2,2 we start
|
||||
! searching near the boundary in case q is not monotonic.
|
||||
sol = [0.8_wp_] ! first guess
|
||||
|
||||
! Solve fq(ψ_n) = qvals(i) for ψ_n
|
||||
call hybrj1(equation, n=1, x=sol, fvec=fvec, fjac=fjac, &
|
||||
ldfjac=1, tol=1e-3_wp_, info=info, wa=wa, lwa=7)
|
||||
! Solution
|
||||
psi_n = sol(1)
|
||||
|
||||
! Handle spurious or no solutions
|
||||
if (info /= 1 .or. psi_n < 0 .or. psi_n > 1) cycle
|
||||
end block
|
||||
|
||||
! Compute and print the ψ_n(R,z) = ψ_n₀ contour
|
||||
block
|
||||
real(wp_), dimension(npoints) :: R_cont, z_cont
|
||||
real(wp_) :: R_hi, R_lo, z_hi, z_lo
|
||||
|
||||
! Guesses for the high,low horzizontal-tangent points
|
||||
R_hi = rmaxis;
|
||||
z_hi = (zbsup + zmaxis)/2
|
||||
R_lo = rmaxis
|
||||
z_lo = (zbinf + zmaxis)/2
|
||||
|
||||
call contours_psi(psi_n, R_cont, z_cont, R_hi, z_hi, R_lo, z_lo)
|
||||
call print_contour(psi_n, R_cont, z_cont)
|
||||
end block
|
||||
|
||||
! Log the values found for ψ_n, ρ_p, ρ_t
|
||||
rho_p = sqrt(psi_n)
|
||||
rho_t = frhotor(rho_p)
|
||||
write (msg, '(4(x,a,"=",g0.3))') &
|
||||
'q', qvals(i), 'ψ_n', psi_n, 'ρ_p', rho_p, 'ρ_t', rho_t
|
||||
call log_info(msg, mod='gray_core', proc='print_surfq')
|
||||
end do
|
||||
|
||||
contains
|
||||
|
||||
subroutine equation(n, x, f, df, ldf, flag)
|
||||
! The equation to solve: f(x) = q(x) - q₀ = 0
|
||||
use const_and_precisions, only : comp_eps
|
||||
|
||||
implicit none
|
||||
|
||||
! subroutine arguments
|
||||
integer, intent(in) :: n, ldf, flag
|
||||
real(wp_), intent(in) :: x(n)
|
||||
real(wp_), intent(inout) :: f(n), df(ldf,n)
|
||||
|
||||
! optimal step size
|
||||
real(wp_), parameter :: e = comp_eps**(1/3.0_wp_)
|
||||
|
||||
if (flag == 1) then
|
||||
! return f(x)
|
||||
f(1) = fq(x(1)) - qvals(i)
|
||||
else
|
||||
! return f'(x), computed numerically
|
||||
df(1,1) = (fq(x(1) + e) - fq(x(1) - e)) / (2*e)
|
||||
end if
|
||||
end subroutine
|
||||
|
||||
end subroutine print_surfq
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user