rework the analytical model
This change modifies the analytical equilibrium in order to simplify the computation of the poloidal flux normalization and the derivatives. In the power law parametrisation of the safety factor, ρ_t is replaced with ρ_p and, similarly, the normalised poloidal radius is now identified with ρ_p, instead of ρ_t. With the same parameters (q₀,q₁,α...), this choice slightly changes the plasma current distribution, but enables us to obtain a closed form for ψ_a = ψ(r=a) and the relation ρ_t(ρ_p). In fact, both expressions are now obtained by integrating the q(ρ_p), instead of 1/q(ρ_t), which has no elementary antiderivative. As the normalisation is now computed exactly, the values of the normalised flux ψ_n = ψ/ψ_a and the gradient ∇ψ (entering the raytracing equations in X and ∇X, respectively) are computed to the same precision. Previously, ψ_n was computed to a lower precision due to the use of a simple trapezoid integration of 1/q(ρ_p) for ψ_a, while ∇ψ was computed up to machine precision using an exact formula. This error effectively caused a very slight decoupling between X=ω_p²/ω² and ∇X that introduced a systematic error in the numerical solution of the raytracing equations. The error manifests itself as a bias with a weak dependency on X in the values taken by the dispersion function Λ(r̅, n̅) on the phase-space points generated by the integrator. More specifically, lim h→0 Λ(r̅_i, n̅_i) = -kX(r̅_i) where h is the integrator step size; r̅_i is the position at the i-th step; k ≈ -3.258⋅10⁻⁵ and depends only on the number of points used to perform the trapedoid integral for ψ_a (as ~ 1/n²). After this change Λ behaves consistently with being a conserved quantity (zero) up to the cumulative integration error of the 4° order Runge-Kutta method. In fact we now have that: Λ(r̅_i, n̅_i) ∝ - h⁴ ‖∂⁴X(r̅_i)/∂r̅⁴‖ It must be said that within this model the relation ρ_p(ρ_t) can't be computed analytically (inverting ρ_t(ρ_p) produces a trascendental equation of the form b = x + c x^α). However, this relation is not necessary for raytracing and is easily solved, up to machine precision, using minpack. In addition, this change also makes the model consistetly use the cocos=3 and fully implements the ability to force the signs of I_p, B_φ (via equilibrium.sgni,sgnb) and rescaling the field (via equilibrium.factb).
This commit is contained in:
parent
1b814fcb8a
commit
127d574be7
@ -1,4 +1,8 @@
|
||||
: rr0m,zr0m,rpam ! rhot[m] = min(sqrt((r-rr0m)**2+(z-zr0m)**2), rpam); tor flux phi = pi*b0*rhot**2
|
||||
: b0 ! Bphi[T] @ rr0m[m]
|
||||
: q0,qa,alq ! q = q0 + (qa-q0)*rhot**alq
|
||||
: nlim ! number of points in first wall (rlim,zlim) polygon
|
||||
2.96 0.0 1.25 ! R₀,z₀,a, where ρ_p(R, z) = √[(R - R₀)² + (z - z₀)²]/a (m)
|
||||
6 ! B₀, where B_φ(R) = B₀ R₀/R (T)
|
||||
3.5 10 2 ! q₀,q₁,α, where q(ρ_p) = q₀ + (q₁-q₀)ρ_p^α
|
||||
0 ! number of points in the limiter contourn, (R,z) pairs
|
||||
|
||||
! Notes:
|
||||
! 1. use B₀>0 for clockwise B_φ
|
||||
! 2. use q₀,q₁<0 for clockwise I_p,B_φ
|
||||
|
@ -1,3 +1,3 @@
|
||||
: dens0,aln1,aln2 ! dens[1e19 m-3] = dens0*(1 - psin**aln1)**aln2
|
||||
: te0,dte0,alt1,alt2 ! temp[keV] = (te0-dte0)*(1 - psin**alt1)**alt2 + dte0
|
||||
: zeffan
|
||||
10 0.3 3 ! n₀,a,b, where n(ψ) = n₀(1 - ψ^a)^b (10¹⁹ m⁻³)
|
||||
14 0 2 8 ! T₀,T₁,a,b, where T(ψ) = (T₀ - T₁)(1 - ψ^a)^b + T₁ (keV)
|
||||
1.0 ! Z_eff
|
||||
|
@ -15,7 +15,11 @@ module equilibrium
|
||||
type analytic_model
|
||||
real(wp_) :: q0 ! Safety factor at the magnetic axis
|
||||
real(wp_) :: q1 ! Safety factor at the edge
|
||||
real(wp_) :: lq ! Exponent for the q(ρ) power law
|
||||
real(wp_) :: alpha ! Exponent for the q(ρ_p) power law
|
||||
real(wp_) :: R0 ! R of the magnetic axis (m)
|
||||
real(wp_) :: z0 ! z of the magnetic axis (m)
|
||||
real(wp_) :: a ! Minor radius (m)
|
||||
real(wp_) :: B0 ! Magnetic field at the magnetic axis (T)
|
||||
end type
|
||||
|
||||
! Order of the splines
|
||||
@ -33,13 +37,18 @@ module equilibrium
|
||||
type(analytic_model), save :: model
|
||||
|
||||
! More parameters
|
||||
real(wp_), save :: fpolas
|
||||
real(wp_), save :: psia, psiant, psinop
|
||||
real(wp_), save :: phitedge, aminor
|
||||
real(wp_), save :: btaxis,rmaxis,zmaxis,sgnbphi
|
||||
real(wp_), save :: fpolas ! Poloidal current at the edge (r=a), F_a
|
||||
real(wp_), save :: psia ! Poloidal flux at the edge (r=a), ψ_a
|
||||
real(wp_), save :: psiant ! Normalised poloidal flux at the true edge
|
||||
real(wp_), save :: psinop ! Normalised poloidal flux at the true O point
|
||||
real(wp_), save :: phitedge ! Toroidal flux at the edge
|
||||
real(wp_), save :: btaxis ! B₀: B_φ = B₀R₀/R
|
||||
real(wp_), save :: rmaxis, zmaxis ! R,z of the magnetic axis (O point)
|
||||
real(wp_), save :: sgnbphi ! Sign of B_φ (>0 means CCW)
|
||||
real(wp_), save :: btrcen ! used only for jcd_astra def.
|
||||
real(wp_), save :: rcen ! computed as fpol(a)/btrcen
|
||||
real(wp_), save :: rmnm, rmxm, zmnm, zmxm
|
||||
real(wp_), save :: rcen ! Major radius R₀, computed as fpolas/btrcen
|
||||
real(wp_), save :: rmnm, rmxm ! R interval of the equilibrium definition
|
||||
real(wp_), save :: zmnm, zmxm ! z interval of the equilibrium definition
|
||||
real(wp_), save :: zbinf, zbsup
|
||||
|
||||
private
|
||||
@ -48,16 +57,16 @@ module equilibrium
|
||||
public equian ! Analytical model
|
||||
public equinum_psi, equinum_fpol ! Interpolated data
|
||||
public fq, bfield, tor_curr, tor_curr_psi ! Accessing local quantities
|
||||
public frhopol, frhopolv, frhotor ! Converting between poloidal/toroidal flux
|
||||
public frhotor, frhopol ! Converting between poloidal/toroidal flux
|
||||
public set_equil_spline, set_equil_an ! Initialising internal state
|
||||
public unset_equil_spline ! Deinitialising internal state
|
||||
|
||||
! Members exposed for magsurf_data
|
||||
public kspl, psi_spline, q_spline, points_tgo
|
||||
public kspl, psi_spline, q_spline, points_tgo, model
|
||||
|
||||
! Members exposed to gray_core and more
|
||||
public psia, psiant, psinop
|
||||
public phitedge, aminor
|
||||
public phitedge
|
||||
public btaxis, rmaxis, zmaxis, sgnbphi
|
||||
public btrcen, rcen
|
||||
public rmnm, rmxm, zmnm, zmxm
|
||||
@ -213,7 +222,6 @@ contains
|
||||
|
||||
! local variables
|
||||
integer :: i, u, nlim
|
||||
real(wp_) :: rr0m, zr0m, rpam, b0
|
||||
|
||||
u = get_free_unit(unit)
|
||||
|
||||
@ -225,20 +233,9 @@ contains
|
||||
return
|
||||
end if
|
||||
|
||||
read(u, *) rr0m, zr0m, rpam
|
||||
read(u, *) b0
|
||||
read(u, *) model%q0, model%q1, model%lq
|
||||
|
||||
if(allocated(data%rv)) deallocate(data%rv)
|
||||
if(allocated(data%zv)) deallocate(data%zv)
|
||||
if(allocated(data%fpol)) deallocate(data%fpol)
|
||||
if(allocated(data%qpsi)) deallocate(data%qpsi)
|
||||
allocate(data%rv(2), data%zv(1), data%fpol(1), data%qpsi(3))
|
||||
|
||||
data%rv = [rr0m, rpam]
|
||||
data%zv = [zr0m]
|
||||
data%fpol = [b0*rr0m]
|
||||
data%qpsi = [model%q0, model%q1, model%lq]
|
||||
read(u, *) model%R0, model%z0, model%a
|
||||
read(u, *) model%B0
|
||||
read(u, *) model%q0, model%q1, model%alpha
|
||||
|
||||
if(ipass >= 2) then
|
||||
! get size of boundary and limiter arrays and allocate them
|
||||
@ -252,7 +249,6 @@ contains
|
||||
read(u,*) (data%rlim(i), data%zlim(i), i = 1, nlim)
|
||||
end if
|
||||
end if
|
||||
|
||||
close(u)
|
||||
end subroutine read_equil_an
|
||||
|
||||
@ -340,18 +336,19 @@ contains
|
||||
|
||||
|
||||
subroutine scale_equil(params, data)
|
||||
! Rescale the magnetic field (B) and the plasma current (I)
|
||||
! Rescale the magnetic field (B) and the plasma current (I_p)
|
||||
! and/or force their signs.
|
||||
!
|
||||
! Notes:
|
||||
! 1. signi and signb are ignored on input if equal to 0.
|
||||
! They are used to assign the direction of Bphi and Ipla BEFORE scaling.
|
||||
! 2. cocos=3 assumed: CCW direction is >0
|
||||
! 3. Bphi and Ipla scaled by the same factor factb to keep q unchanged
|
||||
! They are used to assign the direction of B_φ and I_p BEFORE scaling.
|
||||
! 2. cocos=3 assumed: positive toroidal direction is CCW from above
|
||||
! 3. B_φ and I_p scaled by the same factor factb to keep q unchanged
|
||||
! 4. factb<0 reverses the directions of Bphi and Ipla
|
||||
|
||||
use const_and_precisions, only : one
|
||||
use gray_params, only : equilibrium_parameters, equilibrium_data
|
||||
use gray_params, only : iequil
|
||||
|
||||
implicit none
|
||||
|
||||
@ -359,20 +356,42 @@ contains
|
||||
type(equilibrium_parameters), intent(inout) :: params
|
||||
type(equilibrium_data), intent(inout) :: data
|
||||
|
||||
! local variables
|
||||
real(wp_) :: last_fpol
|
||||
! Notes on cocos=3
|
||||
! 1. With both I_p,B_φ > 0 we have ∂ψ/∂r<0 and ∂Φ/∂r>0.
|
||||
! 2. ψ_a = ψ_edge - ψ_axis < 0.
|
||||
! 3. q = 1/2π ∂Φ/∂ψ ~ ∂Φ/∂r⋅∂r/∂ψ < 0.
|
||||
! 4. In general, sgn(q) = -sgn(I_p)⋅sgn(B_φ).
|
||||
|
||||
last_fpol = data%fpol(size(data%fpol))
|
||||
if (iequil < 2) then
|
||||
! Analytical model
|
||||
|
||||
! Apply signs
|
||||
if (params%sgni /= 0) then
|
||||
model%q0 = sign(model%q0, -params%sgni*one)
|
||||
model%q1 = sign(model%q1, -params%sgni*one)
|
||||
end if
|
||||
if (params%sgnb /= 0) then
|
||||
model%B0 = sign(model%B0, +params%sgnb*one)
|
||||
end if
|
||||
! Rescale
|
||||
model%B0 = model%B0 * params%factb
|
||||
else
|
||||
! Numeric data
|
||||
|
||||
! Apply signs
|
||||
if (params%sgni /= 0) &
|
||||
data%psia = sign(data%psia, real(-params%sgni, wp_))
|
||||
if (params%sgnb /=0 .and. params%sgnb * last_fpol < 0) &
|
||||
data%fpol = -data%fpol
|
||||
|
||||
data%psia = sign(data%psia, -params%sgni*one)
|
||||
if (params%sgnb /= 0) &
|
||||
data%fpol = sign(data%fpol, +params%sgnb*one)
|
||||
! Rescale
|
||||
data%psia = data%psia * params%factb
|
||||
data%fpol = data%fpol * params%factb
|
||||
|
||||
! Compute the signs to be shown in the outputs header when cocos≠0,10.
|
||||
! Note: In these cases the values sgni,sgnb from gray.ini are unused.
|
||||
params%sgni = int(sign(one, -data%psia))
|
||||
params%sgnb = int(sign(one, last_fpol))
|
||||
params%sgnb = int(sign(one, +data%fpol(size(data%fpol))))
|
||||
end if
|
||||
end subroutine scale_equil
|
||||
|
||||
|
||||
@ -713,7 +732,7 @@ contains
|
||||
|
||||
call q_spline%init(psinq, q, size(q))
|
||||
|
||||
! Toroidal flux φ = 2π ∫q(ψ)dψ
|
||||
! Toroidal flux as Φ(ψ) = 2π ∫q(ψ)dψ
|
||||
phit(1)=0
|
||||
do k=1,q_spline%ndata-1
|
||||
dx=q_spline%data(k+1)-q_spline%data(k)
|
||||
@ -726,83 +745,32 @@ contains
|
||||
end subroutine setqphi_num
|
||||
|
||||
|
||||
subroutine set_equil_an(data, n)
|
||||
subroutine set_equil_an
|
||||
! Computes the analytical equilibrium data and stores them
|
||||
! in their respective global variables, see the top of this file.
|
||||
use const_and_precisions, only : pi, zero, one
|
||||
use gray_params, only : equilibrium_data
|
||||
use const_and_precisions, only : pi, one
|
||||
|
||||
implicit none
|
||||
|
||||
! subroutine arguments
|
||||
type(equilibrium_data), intent(in) :: data
|
||||
integer, optional, intent(in) :: n
|
||||
real(wp_) :: dq
|
||||
|
||||
! local variables
|
||||
integer, parameter :: nqdef=101
|
||||
integer :: i
|
||||
real(wp_) :: dr, fq0, fq1, qq, res, rn
|
||||
real(wp_) :: rax, zax, a, bax, qax, q1, qexp
|
||||
real(wp_), dimension(:), allocatable :: rhotn,rhopn
|
||||
btaxis = model%B0
|
||||
rmaxis = model%R0
|
||||
zmaxis = model%z0
|
||||
btrcen = model%B0
|
||||
rcen = model%R0
|
||||
zbinf = model%z0 - model%a
|
||||
zbsup = model%z0 + model%a
|
||||
sgnbphi = sign(one, model%B0)
|
||||
|
||||
rax = data%rv(1)
|
||||
zax = data%zv(1)
|
||||
a = data%rv(2)
|
||||
bax = data%fpol(1) / rax
|
||||
qax = data%qpsi(1)
|
||||
q1 = data%qpsi(2)
|
||||
qexp = data%qpsi(3)
|
||||
|
||||
btaxis = bax
|
||||
rmaxis = rax
|
||||
zmaxis = zax
|
||||
btrcen = bax
|
||||
rcen = rax
|
||||
aminor = a
|
||||
zbinf = zmaxis-a
|
||||
zbsup = zmaxis+a
|
||||
model%q0 = qax
|
||||
model%q1 = q1
|
||||
model%lq = qexp
|
||||
sgnbphi = sign(one, bax)
|
||||
|
||||
rmxm = rmaxis+aminor
|
||||
rmnm = rmaxis-aminor
|
||||
rmxm = model%R0 + model%a
|
||||
rmnm = model%R0 - model%a
|
||||
zmxm = zbsup
|
||||
zmnm = zbinf
|
||||
|
||||
if (present(n)) then
|
||||
q_spline%ndata = n
|
||||
else
|
||||
q_spline%ndata = nqdef
|
||||
end if
|
||||
|
||||
if (allocated(q_spline%data)) deallocate(q_spline%data)
|
||||
allocate(q_spline%data(q_spline%ndata))
|
||||
allocate(rhotn(q_spline%ndata), rhopn(q_spline%ndata))
|
||||
|
||||
dr = one/(q_spline%ndata - 1)
|
||||
rhotn(1) = zero
|
||||
q_spline%data(1) = zero
|
||||
res = zero
|
||||
fq0 = zero
|
||||
do i = 2, q_spline%ndata
|
||||
rn = (i - 1)*dr
|
||||
qq = model%q0 + (model%q1 - model%q0) * rn**model%lq
|
||||
fq1 = rn / qq
|
||||
res = res + (fq1 + fq0)/2 * dr
|
||||
fq0 = fq1
|
||||
rhotn(i) = rn
|
||||
q_spline%data(i) = res
|
||||
end do
|
||||
|
||||
phitedge = btaxis*aminor**2 ! temporary
|
||||
psia = res*phitedge
|
||||
phitedge = pi*phitedge ! final
|
||||
q_spline%data = q_spline%data/res
|
||||
rhopn = sqrt(q_spline%data)
|
||||
|
||||
call set_rho_spline(rhopn, rhotn)
|
||||
phitedge = model%B0 * pi * model%a**2
|
||||
dq = (model%q1 - model%q0) / (model%alpha/2 + 1)
|
||||
psia = 1/(2*pi) * phitedge / (model%q0 + dq)
|
||||
end subroutine set_equil_an
|
||||
|
||||
|
||||
@ -874,120 +842,142 @@ contains
|
||||
end subroutine equinum_fpol
|
||||
|
||||
|
||||
subroutine equian(R, z, psi, fpolv, dfpv, dpsidr, dpsidz, &
|
||||
subroutine equian(R, z, psin, fpolv, dfpv, dpsidr, dpsidz, &
|
||||
ddpsidrr, ddpsidzz, ddpsidrz)
|
||||
! Computes all MHD equilibrium parameters from a simple analytical model
|
||||
implicit none
|
||||
|
||||
! subroutine arguments
|
||||
real(wp_), intent(in) :: R, z
|
||||
real(wp_), intent(out), optional :: psi, fpolv, dfpv, dpsidr, dpsidz, &
|
||||
real(wp_), intent(out), optional :: psin, fpolv, dfpv, dpsidr, dpsidz, &
|
||||
ddpsidrr, ddpsidzz, ddpsidrz
|
||||
|
||||
! local variables
|
||||
real(wp_) :: cst, dpsidrp, d2psidrp, dqq, qq, &
|
||||
rn, rpm, snt, rhop, rhot, btaxqq
|
||||
! variables
|
||||
real(wp_) :: r_p ! poloidal radius
|
||||
real(wp_) :: rho_p ! poloidal radius normalised
|
||||
|
||||
! simple model for equilibrium: large aspect ratio
|
||||
! outside plasma: analytical continuation, not solution Maxwell eqs
|
||||
! ρ_p is just the geometrical poloidal radius divided by a
|
||||
r_p = hypot(R - model%R0, z - model%z0)
|
||||
rho_p = r_p / model%a
|
||||
|
||||
! Note: rpm is ρ_t in meters, rn is ρ_t normalised
|
||||
rpm = hypot(R - rmaxis, z - zmaxis)
|
||||
rn = rpm/aminor
|
||||
! ψ_n = ρ_p²(R,z) = [(R-R₀)² + (z-z₀)²]/a²
|
||||
if (present(psin)) psin = rho_p**2
|
||||
|
||||
snt = 0
|
||||
cst = 1
|
||||
if (rpm > 0) then
|
||||
snt = (z - zmaxis)/rpm
|
||||
cst = (R - rmaxis)/rpm
|
||||
end if
|
||||
! ∂ψ/∂R, ∂ψ/∂z, note that ψ = ψ_n⋅ψ_a
|
||||
if (present(dpsidr)) dpsidr = 2*(R - model%R0)/model%a**2 * psia
|
||||
if (present(dpsidz)) dpsidz = 2*(z - model%z0)/model%a**2 * psia
|
||||
|
||||
if (present(psi)) then
|
||||
rhot=rn
|
||||
if(rn <= 1) then
|
||||
rhop = frhopol(rhot)
|
||||
psi = rhop**2
|
||||
else
|
||||
psi = 1 + btaxis / (2*psia*model%q1) * (rpm**2 - aminor**2)
|
||||
rhop = sqrt(psi)
|
||||
end if
|
||||
end if
|
||||
! ∂²ψ/∂R², ∂²ψ/∂z², ∂²ψ/∂R∂z
|
||||
if (present(ddpsidrr)) ddpsidrr = 2/model%a**2 * psia
|
||||
if (present(ddpsidzz)) ddpsidzz = 2/model%a**2 * psia
|
||||
if (present(ddpsidrz)) ddpsidrz = 0
|
||||
|
||||
if(rn <= 1) then
|
||||
qq = model%q0 + (model%q1 - model%q0) * rn**model%lq
|
||||
btaxqq = btaxis/qq
|
||||
dpsidrp = btaxqq*rpm
|
||||
dqq = model%lq * (model%q1 - model%q0) * rn**(model%lq - 1)
|
||||
d2psidrp=btaxqq*(1 - rn*dqq/qq)
|
||||
else
|
||||
btaxqq = btaxis / model%q1
|
||||
dpsidrp = btaxqq * rpm
|
||||
d2psidrp = btaxqq
|
||||
end if
|
||||
|
||||
if(present(fpolv)) fpolv = btaxis * rmaxis
|
||||
! F(ψ) = B₀⋅R₀, a constant
|
||||
if (present(fpolv)) fpolv = model%B0 * model%R0
|
||||
if (present(dfpv)) dfpv = 0
|
||||
|
||||
if(present(dpsidr)) dpsidr = dpsidrp*cst
|
||||
if(present(dpsidz)) dpsidz = dpsidrp*snt
|
||||
if(present(ddpsidrr)) ddpsidrr = btaxqq*snt**2 + cst**2*d2psidrp
|
||||
if(present(ddpsidrz)) ddpsidrz = cst * snt * (d2psidrp - btaxqq)
|
||||
if(present(ddpsidzz)) ddpsidzz = btaxqq * cst**2 + snt**2 * d2psidrp
|
||||
end subroutine equian
|
||||
|
||||
|
||||
function frhopol(rhot)
|
||||
! Converts from toroidal (ρ_t) to poloidal (ρ_p) normalised radius
|
||||
|
||||
implicit none
|
||||
|
||||
! function arguments
|
||||
real(wp_), intent(in) :: rhot
|
||||
real(wp_) :: frhopol
|
||||
|
||||
frhopol = rhop_spline%eval(rhot)
|
||||
end function frhopol
|
||||
|
||||
|
||||
function frhopolv(rhot)
|
||||
! Vector variant of `frhopol`
|
||||
use utils, only : locate
|
||||
|
||||
implicit none
|
||||
|
||||
! function arguments
|
||||
real(wp_), intent(in) :: rhot(:)
|
||||
real(wp_) :: frhopolv(size(rhot))
|
||||
|
||||
! local variables
|
||||
integer :: i, i0, j
|
||||
|
||||
i0 = 1
|
||||
do j = 1, size(rhot)
|
||||
call locate(rhop_spline%xdata(i0:), rhop_spline%ndata-i0+1, rhot(j), i)
|
||||
i = min(max(1,i), rhop_spline%ndata - i0) + i0 - 1
|
||||
frhopolv(j) = rhop_spline%raw_eval(i, rhot(j))
|
||||
i0 = i
|
||||
end do
|
||||
end function frhopolv
|
||||
|
||||
|
||||
function frhotor(rhop)
|
||||
function frhotor(rho_p)
|
||||
! Converts from poloidal (ρ_p) to toroidal (ρ_t) normalised radius
|
||||
use gray_params, only : iequil
|
||||
|
||||
implicit none
|
||||
|
||||
! function arguments
|
||||
real(wp_), intent(in) :: rhop
|
||||
real(wp_), intent(in) :: rho_p
|
||||
real(wp_) :: frhotor
|
||||
|
||||
frhotor = rhot_spline%eval(rhop)
|
||||
if (iequil < 2) then
|
||||
! Analytical model
|
||||
block
|
||||
! The change of variable is obtained by integrating
|
||||
!
|
||||
! q(ψ) = 1/2π ∂Φ/∂ψ
|
||||
!
|
||||
! and defining ψ = ψ_a ρ_p², Φ = Φ_a ρ_t².
|
||||
! The result is:
|
||||
!
|
||||
! - ψ_a = 1/2π Φ_a / [q₀ + Δq]
|
||||
!
|
||||
! - ρ_t = ρ_p √[(q₀ + Δq ρ_p^α)/(q₀ + Δq)]
|
||||
!
|
||||
! where Δq = (q₁ - q₀)/(α/2 + 1)
|
||||
real(wp_) :: dq
|
||||
dq = (model%q1 - model%q0) / (model%alpha/2 + 1)
|
||||
frhotor = rho_p * sqrt((model%q0 + dq*rho_p**model%alpha) &
|
||||
/ (model%q0 + dq))
|
||||
end block
|
||||
else
|
||||
! Numerical data
|
||||
frhotor = rhot_spline%eval(rho_p)
|
||||
end if
|
||||
end function frhotor
|
||||
|
||||
|
||||
function frhopol(rho_t)
|
||||
! Converts from toroidal (ρ_t) to poloidal (ρ_p) normalised radius
|
||||
use gray_params, only : iequil
|
||||
use const_and_precisions, only : comp_eps
|
||||
|
||||
implicit none
|
||||
|
||||
! function arguments
|
||||
real(wp_), intent(in) :: rho_t
|
||||
real(wp_) :: frhopol
|
||||
|
||||
if (iequil < 2) then
|
||||
! Analytical model
|
||||
block
|
||||
! In general there is no closed form for ρ_p(ρ_t) in the
|
||||
! analytical model, we thus solve numerically the equation
|
||||
! ρ_t(ρ_p) = ρ_t₀ for ρ_p.
|
||||
use minpack, only : hybrj1
|
||||
|
||||
real(wp_) :: rho_p(1), fvec(1), fjac(1,1), wa(7)
|
||||
integer :: info
|
||||
|
||||
rho_p = [rho_t] ! first guess, ρ_p ≈ ρ_t
|
||||
call hybrj1(equation, n=1, x=rho_p, fvec=fvec, fjac=fjac, &
|
||||
ldfjac=1, tol=comp_eps, info=info, wa=wa, lwa=7)
|
||||
frhopol = rho_p(1)
|
||||
end block
|
||||
else
|
||||
! Numerical data
|
||||
frhopol = rhop_spline%eval(rho_t)
|
||||
end if
|
||||
|
||||
contains
|
||||
|
||||
subroutine equation(n, x, f, df, ldf, flag)
|
||||
! The equation to solve: f(x) = ρ_t(x) - ρ_t₀ = 0
|
||||
implicit none
|
||||
|
||||
! optimal step size
|
||||
real(wp_), parameter :: e = comp_eps**(1/3.0_wp_)
|
||||
|
||||
! subroutine arguments
|
||||
integer, intent(in) :: n, ldf, flag
|
||||
real(wp_), intent(in) :: x(n)
|
||||
real(wp_), intent(inout) :: f(n), df(ldf,n)
|
||||
|
||||
if (flag == 1) then
|
||||
! return f(x)
|
||||
f(1) = frhotor(x(1)) - rho_t
|
||||
else
|
||||
! return f'(x), computed numerically
|
||||
df(1,1) = (frhotor(x(1) + e) - frhotor(x(1) - e)) / (2*e)
|
||||
end if
|
||||
end subroutine
|
||||
|
||||
end function frhopol
|
||||
|
||||
|
||||
function fq(psin)
|
||||
! Computes the safety factor q as a function of the
|
||||
! normalised poloidal flux ψ
|
||||
! Computes the safety factor q as a function of the normalised
|
||||
! poloidal flux ψ.
|
||||
!
|
||||
! Note: this returns the absolute value of q.
|
||||
use gray_params, only : iequil
|
||||
|
||||
implicit none
|
||||
@ -996,14 +986,17 @@ contains
|
||||
real(wp_), intent(in) :: psin
|
||||
real(wp_) :: fq
|
||||
|
||||
! local variables
|
||||
real(wp_) :: rn
|
||||
|
||||
if (iequil < 2) then
|
||||
! q = q₀ + (q₁ - q₀)ρ^l
|
||||
rn = frhotor(sqrt(psin))
|
||||
fq = model%q0 + (model%q1 - model%q0) * rn**model%lq
|
||||
! Analytical model
|
||||
! The safety factor is a power law in ρ_p:
|
||||
! q(ρ_p) = q₀ + (q₁-q₀) ρ_p^α
|
||||
block
|
||||
real(wp_) :: rho_p
|
||||
rho_p = sqrt(psin)
|
||||
fq = abs(model%q0 + (model%q1 - model%q0) * rho_p**model%alpha)
|
||||
end block
|
||||
else
|
||||
! Numerical data
|
||||
fq = q_spline%eval(psin)
|
||||
end if
|
||||
end function fq
|
||||
@ -1024,9 +1017,11 @@ contains
|
||||
real(wp_) :: psin,fpol
|
||||
|
||||
if (iequil < 2) then
|
||||
! Analytical model
|
||||
call equian(rpsim,zpsim,fpolv=bphi,dpsidr=bz,dpsidz=br)
|
||||
if (present(bphi)) bphi=bphi/rpsim
|
||||
else
|
||||
! Numerical data
|
||||
call equinum_psi(rpsim,zpsim,psi=bphi,dpsidr=bz,dpsidz=br)
|
||||
if (present(bphi)) then
|
||||
psin=bphi
|
||||
@ -1034,6 +1029,7 @@ contains
|
||||
bphi=fpol/rpsim
|
||||
end if
|
||||
end if
|
||||
|
||||
if (present(br)) br=-br/rpsim
|
||||
if (present(bz)) bz= bz/rpsim
|
||||
end subroutine bfield
|
||||
@ -1055,9 +1051,11 @@ contains
|
||||
real(wp_) :: dpsidr,ddpsidrr,ddpsidzz
|
||||
|
||||
if(iequil < 2) then
|
||||
! Analytical model
|
||||
call equian(rpsim,zpsim,dpsidr=dpsidr, &
|
||||
ddpsidrr=ddpsidrr,ddpsidzz=ddpsidzz)
|
||||
else
|
||||
! Numerical data
|
||||
call equinum_psi(rpsim,zpsim,dpsidr=dpsidr, &
|
||||
ddpsidrr=ddpsidrr,ddpsidzz=ddpsidzz)
|
||||
end if
|
||||
@ -1105,10 +1103,12 @@ contains
|
||||
character(64) :: msg
|
||||
|
||||
if (iequil < 2) then
|
||||
val=frhotor(sqrt(psin))
|
||||
r1=rmaxis-val*aminor
|
||||
r2=rmaxis+val*aminor
|
||||
! Analytical model
|
||||
val = sqrt(psin)
|
||||
r1 = model%R0 - val*model%a
|
||||
r2 = model%R0 + val*model%a
|
||||
else
|
||||
! Numerical data
|
||||
iopt=1
|
||||
zc=zmaxis
|
||||
call profil(iopt, psi_spline%knots_x, psi_spline%nknots_x, &
|
||||
|
@ -2328,7 +2328,7 @@ bb: do
|
||||
do k = 1, q_spline%ndata
|
||||
zk = z(k)
|
||||
if (iequil < 2) then
|
||||
call equian(rj, zk, psi=psin, fpolv=bphi, dpsidr=bz, dpsidz=br)
|
||||
call equian(rj, zk, psin=psin, fpolv=bphi, dpsidr=bz, dpsidz=br)
|
||||
else
|
||||
call equinum_psi(rj, zk, psi=psin, dpsidr=bz, dpsidz=br)
|
||||
call equinum_fpol(psin, fpol=bphi)
|
||||
|
@ -447,7 +447,7 @@ contains
|
||||
use gray_params, only : iequil
|
||||
use logger, only : log_warning
|
||||
use dierckx, only : profil, sproota
|
||||
use equilibrium, only : rmaxis, zmaxis, aminor, frhotor, psi_spline, &
|
||||
use equilibrium, only : model, frhotor, psi_spline, &
|
||||
kspl, psiant, psinop, points_tgo
|
||||
use limiter, only : rwallm
|
||||
|
||||
@ -463,7 +463,7 @@ contains
|
||||
|
||||
! local variables
|
||||
integer :: npoints,np,info,ic,ier,iopt,m
|
||||
real(wp_) :: ra,rb,za,zb,rn,th,zc,val
|
||||
real(wp_) :: ra,rb,za,zb,th,zc,val
|
||||
real(wp_), dimension(mest) :: zeroc
|
||||
real(wp_), dimension(psi_spline%nknots_x) :: czc
|
||||
|
||||
@ -472,13 +472,14 @@ contains
|
||||
th=pi/dble(np)
|
||||
|
||||
if (iequil<2) then
|
||||
|
||||
rn=frhotor(sqrt(h))
|
||||
block
|
||||
real(wp_) :: r_p ! poloidal radius
|
||||
r_p = sqrt(h) * model%a
|
||||
do ic=1,npoints
|
||||
zcn(ic)=zmaxis+aminor*rn*sin(th*(ic-1))
|
||||
rcn(ic)=rmaxis+aminor*rn*cos(th*(ic-1))
|
||||
rcn(ic) = model%R0 + r_p * cos(th*(ic-1))
|
||||
zcn(ic) = model%z0 + r_p * sin(th*(ic-1))
|
||||
end do
|
||||
|
||||
end block
|
||||
else
|
||||
|
||||
ra=rup
|
||||
|
21
src/main.f90
21
src/main.f90
@ -1,5 +1,5 @@
|
||||
program main
|
||||
use const_and_precisions, only : wp_, one, zero
|
||||
use const_and_precisions, only : wp_, zero
|
||||
use logger, only : INFO, ERROR, set_log_level, log_message
|
||||
use units, only : set_active_units, close_units
|
||||
use utils, only : dirname
|
||||
@ -226,11 +226,6 @@ contains
|
||||
params%raytracing%ipass, &
|
||||
data%equilibrium, err)
|
||||
if (err /= 0) return
|
||||
|
||||
! Set psia sign to give the correct sign to Iphi
|
||||
! (COCOS=3: psia<0 for Iphi>0)
|
||||
data%equilibrium%psia = sign(one, data%equilibrium%qpsi(2) &
|
||||
* data%equilibrium%fpol(1))
|
||||
else
|
||||
! Numerical equilibrium
|
||||
call log_debug('loading G-EQDK file', &
|
||||
@ -245,7 +240,7 @@ contains
|
||||
|
||||
! Set global variables (for splines)
|
||||
if (params%equilibrium%iequil < 2) then
|
||||
call set_equil_an(data%equilibrium)
|
||||
call set_equil_an
|
||||
else
|
||||
call log_debug('computing splines...', mod='main', proc='init_equilibrium')
|
||||
call set_equil_spline(params%equilibrium, data%equilibrium, err)
|
||||
@ -281,7 +276,7 @@ contains
|
||||
! temperature, density and plasma effective charge) and initialises
|
||||
! the respective GRAY data structure.
|
||||
use gray_params, only : profiles_parameters, profiles_data
|
||||
use equilibrium, only : frhopolv
|
||||
use equilibrium, only : frhopol
|
||||
use coreprofiles, only : read_profiles_an, read_profiles, &
|
||||
scale_profiles, set_profiles_an, &
|
||||
set_profiles_spline
|
||||
@ -296,6 +291,9 @@ contains
|
||||
type(profiles_data), intent(out) :: data
|
||||
integer, intent(out) :: err
|
||||
|
||||
! local variables
|
||||
integer :: i
|
||||
|
||||
if (params%iprof == 0) then
|
||||
! Analytical profiles
|
||||
call log_debug('loading analytical file', &
|
||||
@ -312,7 +310,7 @@ contains
|
||||
! Convert psrad to ψ
|
||||
select case (params%irho)
|
||||
case (0) ! psrad is ρ_t = √Φ (toroidal flux)
|
||||
data%psrad = frhopolv(data%psrad)**2
|
||||
data%psrad = [(frhopol(data%psrad(i))**2, i=1,size(data%psrad))]
|
||||
case (1) ! psrad is ρ_p = √ψ (poloidal flux)
|
||||
data%psrad = data%psrad**2
|
||||
case default ! psrad is already ψ
|
||||
@ -420,7 +418,10 @@ contains
|
||||
! Max radius, either due to the plasma extent or equilibrium grid
|
||||
if (params%equilibrium%iequil < 2) then
|
||||
! analytic equilibrium, use R₀+a
|
||||
R_max = data%equilibrium%rv(1) + data%equilibrium%rv(2)
|
||||
block
|
||||
use equilibrium, only : model
|
||||
R_max = model%R0 + model%a
|
||||
end block
|
||||
else
|
||||
! numeric equilibrium, use max R of the grid
|
||||
R_max = data%equilibrium%rv(size(data%equilibrium%rv))
|
||||
|
Loading…
Reference in New Issue
Block a user