rework the analytical model

This change modifies the analytical equilibrium in order to simplify the
computation of the poloidal flux normalization and the derivatives.

In the power law parametrisation of the safety factor, ρ_t is replaced
with ρ_p and, similarly, the normalised poloidal radius is now
identified with ρ_p, instead of ρ_t.
With the same parameters (q₀,q₁,α...), this choice slightly changes the
plasma current distribution, but enables us to obtain a closed form for
ψ_a = ψ(r=a) and the relation ρ_t(ρ_p). In fact, both expressions are
now obtained by integrating the q(ρ_p), instead of 1/q(ρ_t), which has
no elementary antiderivative.

As the normalisation is now computed exactly, the values of the
normalised flux ψ_n = ψ/ψ_a and the gradient ∇ψ (entering the raytracing
equations in X and ∇X, respectively) are computed to the same precision.
Previously, ψ_n was computed to a lower precision due to the use of a
simple trapezoid integration of 1/q(ρ_p) for ψ_a, while ∇ψ was computed
up to machine precision using an exact formula.

This error effectively caused a very slight decoupling between X=ω_p²/ω²
and ∇X that introduced a systematic error in the numerical solution of
the raytracing equations.
The error manifests itself as a bias with a weak dependency on X in the
values taken by the dispersion function Λ(r̅, n̅) on the phase-space
points generated by the integrator. More specifically,

  lim h→0 Λ(r̅_i, n̅_i) = -kX(r̅_i)

where h is the integrator step size;
      r̅_i is the position at the i-th step;
      k ≈ -3.258⋅10⁻⁵ and depends only on the number of points used to
        perform the trapedoid integral for ψ_a (as ~ 1/n²).

After this change Λ behaves consistently with being a conserved quantity
(zero) up to the cumulative integration error of the 4° order
Runge-Kutta method. In fact we now have that:

  Λ(r̅_i, n̅_i) ∝ - h⁴ ‖∂⁴X(r̅_i)/∂r̅⁴‖

It must be said that within this model the relation ρ_p(ρ_t) can't be
computed analytically (inverting ρ_t(ρ_p) produces a trascendental
equation of the form b = x + c x^α). However, this relation is not
necessary for raytracing and is easily solved, up to machine
precision, using minpack.

In addition, this change also makes the model consistetly use the
cocos=3 and fully implements the ability to force the signs of I_p, B_φ
(via equilibrium.sgni,sgnb) and rescaling the field (via
equilibrium.factb).
This commit is contained in:
Michele Guerini Rocco 2023-10-11 17:29:24 +02:00
parent 1b814fcb8a
commit 127d574be7
Signed by: rnhmjoj
GPG Key ID: BFBAF4C975F76450
6 changed files with 252 additions and 246 deletions

View File

@ -1,4 +1,8 @@
: rr0m,zr0m,rpam ! rhot[m] = min(sqrt((r-rr0m)**2+(z-zr0m)**2), rpam); tor flux phi = pi*b0*rhot**2
: b0 ! Bphi[T] @ rr0m[m]
: q0,qa,alq ! q = q0 + (qa-q0)*rhot**alq
: nlim ! number of points in first wall (rlim,zlim) polygon
2.96 0.0 1.25 ! R₀,z₀,a, where ρ_p(R, z) = √[(R - R₀)² + (z - z₀)²]/a (m)
6 ! B₀, where B_φ(R) = B₀ R₀/R (T)
3.5 10 2 ! q₀,q₁,α, where q(ρ_p) = q₀ + (q₁-q₀)ρ_p^α
0 ! number of points in the limiter contourn, (R,z) pairs
! Notes:
! 1. use B₀>0 for clockwise B_φ
! 2. use q₀,q₁<0 for clockwise I_p,B_φ

View File

@ -1,3 +1,3 @@
: dens0,aln1,aln2 ! dens[1e19 m-3] = dens0*(1 - psin**aln1)**aln2
: te0,dte0,alt1,alt2 ! temp[keV] = (te0-dte0)*(1 - psin**alt1)**alt2 + dte0
: zeffan
10 0.3 3 ! n₀,a,b, where n(ψ) = n₀(1 - ψ^a)^b (10¹⁹ m⁻³)
14 0 2 8 ! T₀,T₁,a,b, where T(ψ) = (T₀ - T₁)(1 - ψ^a)^b + T₁ (keV)
1.0 ! Z_eff

View File

@ -15,7 +15,11 @@ module equilibrium
type analytic_model
real(wp_) :: q0 ! Safety factor at the magnetic axis
real(wp_) :: q1 ! Safety factor at the edge
real(wp_) :: lq ! Exponent for the q(ρ) power law
real(wp_) :: alpha ! Exponent for the q(ρ_p) power law
real(wp_) :: R0 ! R of the magnetic axis (m)
real(wp_) :: z0 ! z of the magnetic axis (m)
real(wp_) :: a ! Minor radius (m)
real(wp_) :: B0 ! Magnetic field at the magnetic axis (T)
end type
! Order of the splines
@ -33,13 +37,18 @@ module equilibrium
type(analytic_model), save :: model
! More parameters
real(wp_), save :: fpolas
real(wp_), save :: psia, psiant, psinop
real(wp_), save :: phitedge, aminor
real(wp_), save :: btaxis,rmaxis,zmaxis,sgnbphi
real(wp_), save :: fpolas ! Poloidal current at the edge (r=a), F_a
real(wp_), save :: psia ! Poloidal flux at the edge (r=a), ψ_a
real(wp_), save :: psiant ! Normalised poloidal flux at the true edge
real(wp_), save :: psinop ! Normalised poloidal flux at the true O point
real(wp_), save :: phitedge ! Toroidal flux at the edge
real(wp_), save :: btaxis ! B: B_φ = BR/R
real(wp_), save :: rmaxis, zmaxis ! R,z of the magnetic axis (O point)
real(wp_), save :: sgnbphi ! Sign of B_φ (>0 means CCW)
real(wp_), save :: btrcen ! used only for jcd_astra def.
real(wp_), save :: rcen ! computed as fpol(a)/btrcen
real(wp_), save :: rmnm, rmxm, zmnm, zmxm
real(wp_), save :: rcen ! Major radius R, computed as fpolas/btrcen
real(wp_), save :: rmnm, rmxm ! R interval of the equilibrium definition
real(wp_), save :: zmnm, zmxm ! z interval of the equilibrium definition
real(wp_), save :: zbinf, zbsup
private
@ -48,16 +57,16 @@ module equilibrium
public equian ! Analytical model
public equinum_psi, equinum_fpol ! Interpolated data
public fq, bfield, tor_curr, tor_curr_psi ! Accessing local quantities
public frhopol, frhopolv, frhotor ! Converting between poloidal/toroidal flux
public frhotor, frhopol ! Converting between poloidal/toroidal flux
public set_equil_spline, set_equil_an ! Initialising internal state
public unset_equil_spline ! Deinitialising internal state
! Members exposed for magsurf_data
public kspl, psi_spline, q_spline, points_tgo
public kspl, psi_spline, q_spline, points_tgo, model
! Members exposed to gray_core and more
public psia, psiant, psinop
public phitedge, aminor
public phitedge
public btaxis, rmaxis, zmaxis, sgnbphi
public btrcen, rcen
public rmnm, rmxm, zmnm, zmxm
@ -213,7 +222,6 @@ contains
! local variables
integer :: i, u, nlim
real(wp_) :: rr0m, zr0m, rpam, b0
u = get_free_unit(unit)
@ -225,20 +233,9 @@ contains
return
end if
read(u, *) rr0m, zr0m, rpam
read(u, *) b0
read(u, *) model%q0, model%q1, model%lq
if(allocated(data%rv)) deallocate(data%rv)
if(allocated(data%zv)) deallocate(data%zv)
if(allocated(data%fpol)) deallocate(data%fpol)
if(allocated(data%qpsi)) deallocate(data%qpsi)
allocate(data%rv(2), data%zv(1), data%fpol(1), data%qpsi(3))
data%rv = [rr0m, rpam]
data%zv = [zr0m]
data%fpol = [b0*rr0m]
data%qpsi = [model%q0, model%q1, model%lq]
read(u, *) model%R0, model%z0, model%a
read(u, *) model%B0
read(u, *) model%q0, model%q1, model%alpha
if(ipass >= 2) then
! get size of boundary and limiter arrays and allocate them
@ -252,7 +249,6 @@ contains
read(u,*) (data%rlim(i), data%zlim(i), i = 1, nlim)
end if
end if
close(u)
end subroutine read_equil_an
@ -340,18 +336,19 @@ contains
subroutine scale_equil(params, data)
! Rescale the magnetic field (B) and the plasma current (I)
! Rescale the magnetic field (B) and the plasma current (I_p)
! and/or force their signs.
!
! Notes:
! 1. signi and signb are ignored on input if equal to 0.
! They are used to assign the direction of Bphi and Ipla BEFORE scaling.
! 2. cocos=3 assumed: CCW direction is >0
! 3. Bphi and Ipla scaled by the same factor factb to keep q unchanged
! They are used to assign the direction of B and I_p BEFORE scaling.
! 2. cocos=3 assumed: positive toroidal direction is CCW from above
! 3. B and I_p scaled by the same factor factb to keep q unchanged
! 4. factb<0 reverses the directions of Bphi and Ipla
use const_and_precisions, only : one
use gray_params, only : equilibrium_parameters, equilibrium_data
use gray_params, only : iequil
implicit none
@ -359,20 +356,42 @@ contains
type(equilibrium_parameters), intent(inout) :: params
type(equilibrium_data), intent(inout) :: data
! local variables
real(wp_) :: last_fpol
! Notes on cocos=3
! 1. With both I_p,B_φ > 0 we have ψ/r<0 and Φ/r>0.
! 2. ψ_a = ψ_edge - ψ_axis < 0.
! 3. q = 1/2π Φ/ψ ~ Φ/rr/ψ < 0.
! 4. In general, sgn(q) = -sgn(I_p)sgn(B_φ).
last_fpol = data%fpol(size(data%fpol))
if (iequil < 2) then
! Analytical model
! Apply signs
if (params%sgni /= 0) then
model%q0 = sign(model%q0, -params%sgni*one)
model%q1 = sign(model%q1, -params%sgni*one)
end if
if (params%sgnb /= 0) then
model%B0 = sign(model%B0, +params%sgnb*one)
end if
! Rescale
model%B0 = model%B0 * params%factb
else
! Numeric data
! Apply signs
if (params%sgni /= 0) &
data%psia = sign(data%psia, real(-params%sgni, wp_))
if (params%sgnb /=0 .and. params%sgnb * last_fpol < 0) &
data%fpol = -data%fpol
data%psia = sign(data%psia, -params%sgni*one)
if (params%sgnb /= 0) &
data%fpol = sign(data%fpol, +params%sgnb*one)
! Rescale
data%psia = data%psia * params%factb
data%fpol = data%fpol * params%factb
! Compute the signs to be shown in the outputs header when cocos0,10.
! Note: In these cases the values sgni,sgnb from gray.ini are unused.
params%sgni = int(sign(one, -data%psia))
params%sgnb = int(sign(one, last_fpol))
params%sgnb = int(sign(one, +data%fpol(size(data%fpol))))
end if
end subroutine scale_equil
@ -713,7 +732,7 @@ contains
call q_spline%init(psinq, q, size(q))
! Toroidal flux φ = 2π q(ψ)
! Toroidal flux as Φ(ψ) = 2π q(ψ)
phit(1)=0
do k=1,q_spline%ndata-1
dx=q_spline%data(k+1)-q_spline%data(k)
@ -726,83 +745,32 @@ contains
end subroutine setqphi_num
subroutine set_equil_an(data, n)
subroutine set_equil_an
! Computes the analytical equilibrium data and stores them
! in their respective global variables, see the top of this file.
use const_and_precisions, only : pi, zero, one
use gray_params, only : equilibrium_data
use const_and_precisions, only : pi, one
implicit none
! subroutine arguments
type(equilibrium_data), intent(in) :: data
integer, optional, intent(in) :: n
real(wp_) :: dq
! local variables
integer, parameter :: nqdef=101
integer :: i
real(wp_) :: dr, fq0, fq1, qq, res, rn
real(wp_) :: rax, zax, a, bax, qax, q1, qexp
real(wp_), dimension(:), allocatable :: rhotn,rhopn
btaxis = model%B0
rmaxis = model%R0
zmaxis = model%z0
btrcen = model%B0
rcen = model%R0
zbinf = model%z0 - model%a
zbsup = model%z0 + model%a
sgnbphi = sign(one, model%B0)
rax = data%rv(1)
zax = data%zv(1)
a = data%rv(2)
bax = data%fpol(1) / rax
qax = data%qpsi(1)
q1 = data%qpsi(2)
qexp = data%qpsi(3)
btaxis = bax
rmaxis = rax
zmaxis = zax
btrcen = bax
rcen = rax
aminor = a
zbinf = zmaxis-a
zbsup = zmaxis+a
model%q0 = qax
model%q1 = q1
model%lq = qexp
sgnbphi = sign(one, bax)
rmxm = rmaxis+aminor
rmnm = rmaxis-aminor
rmxm = model%R0 + model%a
rmnm = model%R0 - model%a
zmxm = zbsup
zmnm = zbinf
if (present(n)) then
q_spline%ndata = n
else
q_spline%ndata = nqdef
end if
if (allocated(q_spline%data)) deallocate(q_spline%data)
allocate(q_spline%data(q_spline%ndata))
allocate(rhotn(q_spline%ndata), rhopn(q_spline%ndata))
dr = one/(q_spline%ndata - 1)
rhotn(1) = zero
q_spline%data(1) = zero
res = zero
fq0 = zero
do i = 2, q_spline%ndata
rn = (i - 1)*dr
qq = model%q0 + (model%q1 - model%q0) * rn**model%lq
fq1 = rn / qq
res = res + (fq1 + fq0)/2 * dr
fq0 = fq1
rhotn(i) = rn
q_spline%data(i) = res
end do
phitedge = btaxis*aminor**2 ! temporary
psia = res*phitedge
phitedge = pi*phitedge ! final
q_spline%data = q_spline%data/res
rhopn = sqrt(q_spline%data)
call set_rho_spline(rhopn, rhotn)
phitedge = model%B0 * pi * model%a**2
dq = (model%q1 - model%q0) / (model%alpha/2 + 1)
psia = 1/(2*pi) * phitedge / (model%q0 + dq)
end subroutine set_equil_an
@ -874,120 +842,142 @@ contains
end subroutine equinum_fpol
subroutine equian(R, z, psi, fpolv, dfpv, dpsidr, dpsidz, &
subroutine equian(R, z, psin, fpolv, dfpv, dpsidr, dpsidz, &
ddpsidrr, ddpsidzz, ddpsidrz)
! Computes all MHD equilibrium parameters from a simple analytical model
implicit none
! subroutine arguments
real(wp_), intent(in) :: R, z
real(wp_), intent(out), optional :: psi, fpolv, dfpv, dpsidr, dpsidz, &
real(wp_), intent(out), optional :: psin, fpolv, dfpv, dpsidr, dpsidz, &
ddpsidrr, ddpsidzz, ddpsidrz
! local variables
real(wp_) :: cst, dpsidrp, d2psidrp, dqq, qq, &
rn, rpm, snt, rhop, rhot, btaxqq
! variables
real(wp_) :: r_p ! poloidal radius
real(wp_) :: rho_p ! poloidal radius normalised
! simple model for equilibrium: large aspect ratio
! outside plasma: analytical continuation, not solution Maxwell eqs
! ρ_p is just the geometrical poloidal radius divided by a
r_p = hypot(R - model%R0, z - model%z0)
rho_p = r_p / model%a
! Note: rpm is ρ_t in meters, rn is ρ_t normalised
rpm = hypot(R - rmaxis, z - zmaxis)
rn = rpm/aminor
! ψ_n = ρ_p²(R,z) = [(R-R)² + (z-z)²]/a²
if (present(psin)) psin = rho_p**2
snt = 0
cst = 1
if (rpm > 0) then
snt = (z - zmaxis)/rpm
cst = (R - rmaxis)/rpm
end if
! ψ/R, ψ/z, note that ψ = ψ_nψ_a
if (present(dpsidr)) dpsidr = 2*(R - model%R0)/model%a**2 * psia
if (present(dpsidz)) dpsidz = 2*(z - model%z0)/model%a**2 * psia
if (present(psi)) then
rhot=rn
if(rn <= 1) then
rhop = frhopol(rhot)
psi = rhop**2
else
psi = 1 + btaxis / (2*psia*model%q1) * (rpm**2 - aminor**2)
rhop = sqrt(psi)
end if
end if
! ²ψ/R², ²ψ/z², ²ψ/Rz
if (present(ddpsidrr)) ddpsidrr = 2/model%a**2 * psia
if (present(ddpsidzz)) ddpsidzz = 2/model%a**2 * psia
if (present(ddpsidrz)) ddpsidrz = 0
if(rn <= 1) then
qq = model%q0 + (model%q1 - model%q0) * rn**model%lq
btaxqq = btaxis/qq
dpsidrp = btaxqq*rpm
dqq = model%lq * (model%q1 - model%q0) * rn**(model%lq - 1)
d2psidrp=btaxqq*(1 - rn*dqq/qq)
else
btaxqq = btaxis / model%q1
dpsidrp = btaxqq * rpm
d2psidrp = btaxqq
end if
if(present(fpolv)) fpolv = btaxis * rmaxis
! F(ψ) = BR, a constant
if (present(fpolv)) fpolv = model%B0 * model%R0
if (present(dfpv)) dfpv = 0
if(present(dpsidr)) dpsidr = dpsidrp*cst
if(present(dpsidz)) dpsidz = dpsidrp*snt
if(present(ddpsidrr)) ddpsidrr = btaxqq*snt**2 + cst**2*d2psidrp
if(present(ddpsidrz)) ddpsidrz = cst * snt * (d2psidrp - btaxqq)
if(present(ddpsidzz)) ddpsidzz = btaxqq * cst**2 + snt**2 * d2psidrp
end subroutine equian
function frhopol(rhot)
! Converts from toroidal (ρ_t) to poloidal (ρ_p) normalised radius
implicit none
! function arguments
real(wp_), intent(in) :: rhot
real(wp_) :: frhopol
frhopol = rhop_spline%eval(rhot)
end function frhopol
function frhopolv(rhot)
! Vector variant of `frhopol`
use utils, only : locate
implicit none
! function arguments
real(wp_), intent(in) :: rhot(:)
real(wp_) :: frhopolv(size(rhot))
! local variables
integer :: i, i0, j
i0 = 1
do j = 1, size(rhot)
call locate(rhop_spline%xdata(i0:), rhop_spline%ndata-i0+1, rhot(j), i)
i = min(max(1,i), rhop_spline%ndata - i0) + i0 - 1
frhopolv(j) = rhop_spline%raw_eval(i, rhot(j))
i0 = i
end do
end function frhopolv
function frhotor(rhop)
function frhotor(rho_p)
! Converts from poloidal (ρ_p) to toroidal (ρ_t) normalised radius
use gray_params, only : iequil
implicit none
! function arguments
real(wp_), intent(in) :: rhop
real(wp_), intent(in) :: rho_p
real(wp_) :: frhotor
frhotor = rhot_spline%eval(rhop)
if (iequil < 2) then
! Analytical model
block
! The change of variable is obtained by integrating
!
! q(ψ) = 1/2π Φ/ψ
!
! and defining ψ = ψ_a ρ_p², Φ = Φ_a ρ_t².
! The result is:
!
! - ψ_a = 1/2π Φ_a / [q + Δq]
!
! - ρ_t = ρ_p [(q + Δq ρ_p^α)/(q + Δq)]
!
! where Δq = (q - q)/(α/2 + 1)
real(wp_) :: dq
dq = (model%q1 - model%q0) / (model%alpha/2 + 1)
frhotor = rho_p * sqrt((model%q0 + dq*rho_p**model%alpha) &
/ (model%q0 + dq))
end block
else
! Numerical data
frhotor = rhot_spline%eval(rho_p)
end if
end function frhotor
function frhopol(rho_t)
! Converts from toroidal (ρ_t) to poloidal (ρ_p) normalised radius
use gray_params, only : iequil
use const_and_precisions, only : comp_eps
implicit none
! function arguments
real(wp_), intent(in) :: rho_t
real(wp_) :: frhopol
if (iequil < 2) then
! Analytical model
block
! In general there is no closed form for ρ_p(ρ_t) in the
! analytical model, we thus solve numerically the equation
! ρ_t(ρ_p) = ρ_t for ρ_p.
use minpack, only : hybrj1
real(wp_) :: rho_p(1), fvec(1), fjac(1,1), wa(7)
integer :: info
rho_p = [rho_t] ! first guess, ρ_p ρ_t
call hybrj1(equation, n=1, x=rho_p, fvec=fvec, fjac=fjac, &
ldfjac=1, tol=comp_eps, info=info, wa=wa, lwa=7)
frhopol = rho_p(1)
end block
else
! Numerical data
frhopol = rhop_spline%eval(rho_t)
end if
contains
subroutine equation(n, x, f, df, ldf, flag)
! The equation to solve: f(x) = ρ_t(x) - ρ_t = 0
implicit none
! optimal step size
real(wp_), parameter :: e = comp_eps**(1/3.0_wp_)
! subroutine arguments
integer, intent(in) :: n, ldf, flag
real(wp_), intent(in) :: x(n)
real(wp_), intent(inout) :: f(n), df(ldf,n)
if (flag == 1) then
! return f(x)
f(1) = frhotor(x(1)) - rho_t
else
! return f'(x), computed numerically
df(1,1) = (frhotor(x(1) + e) - frhotor(x(1) - e)) / (2*e)
end if
end subroutine
end function frhopol
function fq(psin)
! Computes the safety factor q as a function of the
! normalised poloidal flux ψ
! Computes the safety factor q as a function of the normalised
! poloidal flux ψ.
!
! Note: this returns the absolute value of q.
use gray_params, only : iequil
implicit none
@ -996,14 +986,17 @@ contains
real(wp_), intent(in) :: psin
real(wp_) :: fq
! local variables
real(wp_) :: rn
if (iequil < 2) then
! q = q + (q - q)ρ^l
rn = frhotor(sqrt(psin))
fq = model%q0 + (model%q1 - model%q0) * rn**model%lq
! Analytical model
! The safety factor is a power law in ρ_p:
! q(ρ_p) = q + (q-q) ρ_p^α
block
real(wp_) :: rho_p
rho_p = sqrt(psin)
fq = abs(model%q0 + (model%q1 - model%q0) * rho_p**model%alpha)
end block
else
! Numerical data
fq = q_spline%eval(psin)
end if
end function fq
@ -1024,9 +1017,11 @@ contains
real(wp_) :: psin,fpol
if (iequil < 2) then
! Analytical model
call equian(rpsim,zpsim,fpolv=bphi,dpsidr=bz,dpsidz=br)
if (present(bphi)) bphi=bphi/rpsim
else
! Numerical data
call equinum_psi(rpsim,zpsim,psi=bphi,dpsidr=bz,dpsidz=br)
if (present(bphi)) then
psin=bphi
@ -1034,6 +1029,7 @@ contains
bphi=fpol/rpsim
end if
end if
if (present(br)) br=-br/rpsim
if (present(bz)) bz= bz/rpsim
end subroutine bfield
@ -1055,9 +1051,11 @@ contains
real(wp_) :: dpsidr,ddpsidrr,ddpsidzz
if(iequil < 2) then
! Analytical model
call equian(rpsim,zpsim,dpsidr=dpsidr, &
ddpsidrr=ddpsidrr,ddpsidzz=ddpsidzz)
else
! Numerical data
call equinum_psi(rpsim,zpsim,dpsidr=dpsidr, &
ddpsidrr=ddpsidrr,ddpsidzz=ddpsidzz)
end if
@ -1105,10 +1103,12 @@ contains
character(64) :: msg
if (iequil < 2) then
val=frhotor(sqrt(psin))
r1=rmaxis-val*aminor
r2=rmaxis+val*aminor
! Analytical model
val = sqrt(psin)
r1 = model%R0 - val*model%a
r2 = model%R0 + val*model%a
else
! Numerical data
iopt=1
zc=zmaxis
call profil(iopt, psi_spline%knots_x, psi_spline%nknots_x, &

View File

@ -2328,7 +2328,7 @@ bb: do
do k = 1, q_spline%ndata
zk = z(k)
if (iequil < 2) then
call equian(rj, zk, psi=psin, fpolv=bphi, dpsidr=bz, dpsidz=br)
call equian(rj, zk, psin=psin, fpolv=bphi, dpsidr=bz, dpsidz=br)
else
call equinum_psi(rj, zk, psi=psin, dpsidr=bz, dpsidz=br)
call equinum_fpol(psin, fpol=bphi)

View File

@ -447,7 +447,7 @@ contains
use gray_params, only : iequil
use logger, only : log_warning
use dierckx, only : profil, sproota
use equilibrium, only : rmaxis, zmaxis, aminor, frhotor, psi_spline, &
use equilibrium, only : model, frhotor, psi_spline, &
kspl, psiant, psinop, points_tgo
use limiter, only : rwallm
@ -463,7 +463,7 @@ contains
! local variables
integer :: npoints,np,info,ic,ier,iopt,m
real(wp_) :: ra,rb,za,zb,rn,th,zc,val
real(wp_) :: ra,rb,za,zb,th,zc,val
real(wp_), dimension(mest) :: zeroc
real(wp_), dimension(psi_spline%nknots_x) :: czc
@ -472,13 +472,14 @@ contains
th=pi/dble(np)
if (iequil<2) then
rn=frhotor(sqrt(h))
block
real(wp_) :: r_p ! poloidal radius
r_p = sqrt(h) * model%a
do ic=1,npoints
zcn(ic)=zmaxis+aminor*rn*sin(th*(ic-1))
rcn(ic)=rmaxis+aminor*rn*cos(th*(ic-1))
rcn(ic) = model%R0 + r_p * cos(th*(ic-1))
zcn(ic) = model%z0 + r_p * sin(th*(ic-1))
end do
end block
else
ra=rup

View File

@ -1,5 +1,5 @@
program main
use const_and_precisions, only : wp_, one, zero
use const_and_precisions, only : wp_, zero
use logger, only : INFO, ERROR, set_log_level, log_message
use units, only : set_active_units, close_units
use utils, only : dirname
@ -226,11 +226,6 @@ contains
params%raytracing%ipass, &
data%equilibrium, err)
if (err /= 0) return
! Set psia sign to give the correct sign to Iphi
! (COCOS=3: psia<0 for Iphi>0)
data%equilibrium%psia = sign(one, data%equilibrium%qpsi(2) &
* data%equilibrium%fpol(1))
else
! Numerical equilibrium
call log_debug('loading G-EQDK file', &
@ -245,7 +240,7 @@ contains
! Set global variables (for splines)
if (params%equilibrium%iequil < 2) then
call set_equil_an(data%equilibrium)
call set_equil_an
else
call log_debug('computing splines...', mod='main', proc='init_equilibrium')
call set_equil_spline(params%equilibrium, data%equilibrium, err)
@ -281,7 +276,7 @@ contains
! temperature, density and plasma effective charge) and initialises
! the respective GRAY data structure.
use gray_params, only : profiles_parameters, profiles_data
use equilibrium, only : frhopolv
use equilibrium, only : frhopol
use coreprofiles, only : read_profiles_an, read_profiles, &
scale_profiles, set_profiles_an, &
set_profiles_spline
@ -296,6 +291,9 @@ contains
type(profiles_data), intent(out) :: data
integer, intent(out) :: err
! local variables
integer :: i
if (params%iprof == 0) then
! Analytical profiles
call log_debug('loading analytical file', &
@ -312,7 +310,7 @@ contains
! Convert psrad to ψ
select case (params%irho)
case (0) ! psrad is ρ_t = Φ (toroidal flux)
data%psrad = frhopolv(data%psrad)**2
data%psrad = [(frhopol(data%psrad(i))**2, i=1,size(data%psrad))]
case (1) ! psrad is ρ_p = ψ (poloidal flux)
data%psrad = data%psrad**2
case default ! psrad is already ψ
@ -420,7 +418,10 @@ contains
! Max radius, either due to the plasma extent or equilibrium grid
if (params%equilibrium%iequil < 2) then
! analytic equilibrium, use R+a
R_max = data%equilibrium%rv(1) + data%equilibrium%rv(2)
block
use equilibrium, only : model
R_max = model%R0 + model%a
end block
else
! numeric equilibrium, use max R of the grid
R_max = data%equilibrium%rv(size(data%equilibrium%rv))