mirror of
https://github.com/fazo96/AIrium.git
synced 2025-01-25 11:54:20 +01:00
reimplemented neural networks with a better model, need to fix lag
This commit is contained in:
parent
75d91da46c
commit
1cada40ab6
@ -10,75 +10,106 @@ import java.util.ArrayList;
|
||||
public class Brain {
|
||||
|
||||
public static final float bias = 0.5f;
|
||||
private ArrayList<Neuron> inputs, outputs, hidden;
|
||||
private Neuron[][] neurons;
|
||||
private int nInputs;
|
||||
|
||||
public Brain(int nInputs, int nOutputs, int hiddenLayers, int neuronsPerHiddenLayer) {
|
||||
inputs = new ArrayList<Neuron>(nInputs);
|
||||
outputs = new ArrayList<Neuron>(nOutputs);
|
||||
hidden = new ArrayList<Neuron>(hiddenLayers * neuronsPerHiddenLayer);
|
||||
this.nInputs = nInputs;
|
||||
neurons = new Neuron[hiddenLayers + 2][Math.max(nInputs, Math.max(nOutputs, neuronsPerHiddenLayer))];
|
||||
populate(nInputs, nOutputs, hiddenLayers, neuronsPerHiddenLayer);
|
||||
}
|
||||
|
||||
private void populate(int nInputs, int nOutputs, int hiddenLayers, int neuronsPerHiddenLayer) {
|
||||
// Create input neurons
|
||||
for (int i = 0; i < nInputs; i++) {
|
||||
inputs.add(new Neuron(0,bias));
|
||||
neurons[0][i] = new Neuron(0, bias, this);
|
||||
Log.log(Log.DEBUG, "Adding Input Layer Neuron " + (i + 1));
|
||||
}
|
||||
// popiulate hidden layers
|
||||
for (int i = 0; i < hiddenLayers; i++) {
|
||||
for (int j = 0; j < neuronsPerHiddenLayer; j++) {
|
||||
// create neuron
|
||||
Neuron n = new Neuron(i + 1,bias);
|
||||
// add connections
|
||||
for (Neuron s : inputs) {
|
||||
n.getInputs().add(new NeuralConnection(randWeight(), s));
|
||||
}
|
||||
hidden.add(n);
|
||||
Log.log(Log.DEBUG,"Adding Hidden Layer " + (i + 1) + " Neuron " + j + " with " + inputs.size() + " inputs");
|
||||
Neuron n = new Neuron(i + 1, bias, this);
|
||||
neurons[i + 1][j] = n;
|
||||
Log.log(Log.DEBUG, "Adding Hidden Layer " + (i + 1) + " Neuron " + (j + 1));
|
||||
}
|
||||
}
|
||||
// populate output layer
|
||||
for (int i = 0; i < nOutputs; i++) {
|
||||
// add neuron
|
||||
Neuron n = new Neuron(hiddenLayers + 1,bias);
|
||||
int conn = 0;
|
||||
for (Neuron s : hidden) {
|
||||
// add connections where applicable
|
||||
if (s.getLayer() == hiddenLayers) {
|
||||
conn++;
|
||||
n.getInputs().add(new NeuralConnection(randWeight(), s));
|
||||
}
|
||||
}
|
||||
Log.log(Log.DEBUG,"Adding Output Layer Neuron " + i + " with " + conn + " inputs");
|
||||
outputs.add(n);
|
||||
Neuron n = new Neuron(hiddenLayers + 1, bias, this);
|
||||
neurons[hiddenLayers + 1][i] = n;
|
||||
Log.log(Log.DEBUG, "Adding Output Layer Neuron " + (i + 1));
|
||||
}
|
||||
}
|
||||
|
||||
private float randWeight() {
|
||||
return (float) Math.random()*5 - 2.5f;
|
||||
return (float) Math.random() * 5 - 2.5f;
|
||||
}
|
||||
|
||||
public void input(float[] values) {
|
||||
for (int i = 0; i < values.length; i++) {
|
||||
inputs.get(i).setOutput(values[i]);
|
||||
neurons[0][i].setOutput(values[i]);
|
||||
}
|
||||
}
|
||||
|
||||
public float[] compute() {
|
||||
for (Neuron n : hidden) {
|
||||
n.clearCachedValue();
|
||||
}
|
||||
float[] res = new float[outputs.size()];
|
||||
for (int i = 0; i < outputs.size(); i++) {
|
||||
Neuron n = outputs.get(i);
|
||||
n.clearCachedValue();
|
||||
res[i] = n.compute();
|
||||
float[] res = new float[neurons[neurons.length - 1].length];
|
||||
for (int i = 0; i < neurons[neurons.length - 1].length; i++) {
|
||||
Neuron n = neurons[neurons.length - 1][i];
|
||||
if (n != null) {
|
||||
res[i] = n.compute();
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
public void mutate(float mutationFactor) {
|
||||
for(Neuron n : hidden) n.mutate(mutationFactor);
|
||||
public void map(float[][][] map) {
|
||||
// Populate with new neurons
|
||||
for (int j = 0; j < map.length; j++) {
|
||||
for (int i = 0; i < map[j].length; i++) {
|
||||
if (map[j] == null || map[i] == null) {
|
||||
continue;
|
||||
}
|
||||
neurons[j][i] = new Neuron(j, bias, this);
|
||||
neurons[j][i].setWeights(map[j][i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public float[][][] getMap() {
|
||||
float[][][] res = new float[neurons.length][neurons[1].length][neurons[1].length];
|
||||
for (int i = 0; i < neurons.length; i++) // layers
|
||||
{
|
||||
for (int j = 0; i < neurons[i].length; j++) // neurons per layer
|
||||
{
|
||||
if (neurons[i][j] == null) {
|
||||
continue;
|
||||
}
|
||||
res[i][j] = neurons[i][j].getWeights();
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
public float[][][] mutate(float mutationFactor) {
|
||||
float[][][] res = new float[neurons.length][neurons[1].length][neurons[1].length];
|
||||
for (int i = 0; i < neurons.length; i++) // layers
|
||||
{
|
||||
for (int j = 0; i < neurons[i].length; j++) // neurons per layer
|
||||
{
|
||||
res[i][j] = neurons[i][j].mutate(mutationFactor);
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
public Neuron[][] getNeurons() {
|
||||
return neurons;
|
||||
}
|
||||
|
||||
public int howManyInputNeurons() {
|
||||
return nInputs;
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -1,50 +0,0 @@
|
||||
/*
|
||||
* To change this license header, choose License Headers in Project Properties.
|
||||
* To change this template file, choose Tools | Templates
|
||||
* and open the template in the editor.
|
||||
*/
|
||||
package logic.neural;
|
||||
|
||||
/**
|
||||
*
|
||||
* @author fazo
|
||||
*/
|
||||
public class NeuralConnection {
|
||||
|
||||
private float weight = 1;
|
||||
|
||||
private final Neuron source;
|
||||
private float cachedValue;
|
||||
private boolean cachedValueValid = false;
|
||||
|
||||
public NeuralConnection(float weight, Neuron source) {
|
||||
this.source = source;
|
||||
this.weight = weight;
|
||||
}
|
||||
|
||||
public float compute() {
|
||||
if (cachedValueValid) {
|
||||
return cachedValue;
|
||||
}
|
||||
// get value from Neuron
|
||||
cachedValueValid = true;
|
||||
return cachedValue = source.compute() * getWeight();
|
||||
}
|
||||
|
||||
public void mutate(float mutationFactor) {
|
||||
float mutation = (float) (Math.random() * mutationFactor - mutationFactor/2);
|
||||
weight += mutation;
|
||||
}
|
||||
|
||||
public void clearCachedValue() {
|
||||
cachedValueValid = false;
|
||||
}
|
||||
|
||||
public float getWeight() {
|
||||
return weight;
|
||||
}
|
||||
|
||||
public void setWeight(float weight) {
|
||||
this.weight = weight;
|
||||
}
|
||||
}
|
@ -7,6 +7,9 @@ package logic.neural;
|
||||
|
||||
import com.mygdx.game.Log;
|
||||
import java.util.ArrayList;
|
||||
import java.util.Arrays;
|
||||
import java.util.logging.Level;
|
||||
import java.util.logging.Logger;
|
||||
|
||||
/**
|
||||
*
|
||||
@ -14,49 +17,72 @@ import java.util.ArrayList;
|
||||
*/
|
||||
public class Neuron {
|
||||
|
||||
private ArrayList<NeuralConnection> inputs;
|
||||
private float[] weights;
|
||||
private float bias, output;
|
||||
private boolean isInputNeuron;
|
||||
private int layer;
|
||||
private float cachedValue;
|
||||
private boolean cachedValueValid = false;
|
||||
private Brain brain;
|
||||
|
||||
public Neuron(int layer, float bias) {
|
||||
public Neuron(int layer, float bias, Brain brain) {
|
||||
this(layer, bias, brain, null);
|
||||
}
|
||||
|
||||
public Neuron(int layer, float bias, Brain brain, float[] weights) {
|
||||
this.brain = brain;
|
||||
this.layer = layer;
|
||||
inputs = new ArrayList<NeuralConnection>();
|
||||
if (weights == null) {
|
||||
scramble();
|
||||
} else {
|
||||
this.weights = weights;
|
||||
}
|
||||
}
|
||||
|
||||
private void scramble() {
|
||||
// init weights
|
||||
if (layer > 1) {
|
||||
weights = new float[brain.getNeurons()[layer - 1].length];
|
||||
} else if (layer == 1) {
|
||||
weights = new float[brain.howManyInputNeurons()];
|
||||
} else { // layer 0
|
||||
isInputNeuron = true;
|
||||
weights = new float[0];
|
||||
}
|
||||
// Put random weights
|
||||
for (int i = 0; i < weights.length; i++) {
|
||||
weights[i] = (float) (Math.random() * 5 - 2.5f);
|
||||
}
|
||||
}
|
||||
|
||||
public float compute() {
|
||||
if (isInputNeuron) {
|
||||
return output;
|
||||
}
|
||||
if (cachedValueValid) {
|
||||
return cachedValue;
|
||||
}
|
||||
float a = bias * -1; // activation
|
||||
for (NeuralConnection i : inputs) {
|
||||
a += i.compute();
|
||||
for (int i = 0; i < weights.length; i++) {
|
||||
//if(brain == null) System.out.println("BRAINS NULL"); else if(brain.getNeurons() == null) System.out.println("NEURONS NULL");
|
||||
//System.out.println(Arrays.toString(brain.getNeurons()));
|
||||
Neuron n = brain.getNeurons()[layer - 1][i];
|
||||
a += n.compute() * weights[i];
|
||||
}
|
||||
cachedValueValid = true;
|
||||
// sigmoid function
|
||||
cachedValue = (float) (1 / (1 + Math.pow(Math.E, a * -1)));
|
||||
Log.log(Log.DEBUG,"Computed Value "+cachedValue+" for neuron");
|
||||
return cachedValue;
|
||||
float res = (float) (1 / (1 + Math.pow(Math.E, a * -1)));
|
||||
Log.log(Log.DEBUG, "Computed Value " + res + " for neuron");
|
||||
return res;
|
||||
}
|
||||
|
||||
public void mutate(float mutationFactor){
|
||||
for(NeuralConnection n : inputs) n.mutate(mutationFactor);
|
||||
public float[] mutate(float mutationFactor) {
|
||||
float[] mutatedWeights = new float[weights.length];
|
||||
for (int i = 0; i < weights.length; i++) {
|
||||
mutatedWeights[i] = weights[i] + mutationFactor - mutationFactor / 2;
|
||||
}
|
||||
return mutatedWeights;
|
||||
}
|
||||
|
||||
|
||||
public void setOutput(float output) {
|
||||
isInputNeuron = true;
|
||||
this.output = output;
|
||||
}
|
||||
|
||||
public ArrayList<NeuralConnection> getInputs() {
|
||||
return inputs;
|
||||
}
|
||||
|
||||
public float getBias() {
|
||||
return bias;
|
||||
}
|
||||
@ -77,9 +103,12 @@ public class Neuron {
|
||||
this.layer = layer;
|
||||
}
|
||||
|
||||
public void clearCachedValue() {
|
||||
cachedValueValid = false;
|
||||
for(NeuralConnection n : inputs) n.clearCachedValue();
|
||||
public float[] getWeights() {
|
||||
return weights;
|
||||
}
|
||||
|
||||
public void setWeights(float[] weights) {
|
||||
this.weights = weights;
|
||||
}
|
||||
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user