1.3 KiB
1.3 KiB
Sample parameters estimation
Sample parameters estimation
Once the points are sampled,
how to estimate their median, mode and FWHM?
. . .
- Binning data
\quad \longrightarrow \quad
result depending on bin-width
. . .
- Alternative solutions
Sample median
m = Q \left( \frac{1}{2} \right)
. . .
- Sort points in ascending order
. . .
- Middle element if odd
- Average of the two central elements if even
Sample mode
Most probable value
. . .
HSM
- Iteratively identify the smallest interval containing half points
- Once the sample is reduced to less than three points, take average
Sample FWHM
\text{FWHM} = x_+ - x_- \with L(x_{\pm}) = \frac{L_{\text{max}}}{2}
. . .
KDE
- empirical PDF construction:
f_\varepsilon(x) = \frac{1}{N\varepsilon} \sum_{i = 1}^N
G \left( \frac{x-x_i}{\varepsilon} \right)
The parameter \varepsilon
controls the strength of the smoothing
Sample FWHM
Silverman's rule of thumb:
f_\varepsilon(x) = \frac{1}{N\varepsilon} \sum_{i = 1}^N
G \left( \frac{x-x_i}{\varepsilon} \right)
\with
\varepsilon = 0.88 \, S_N
\left( \frac{d + 2}{4}N \right)^{-1/(d + 4)}
with:
S_N
is the sample standard deviationd
is number of dimensions (d = 1
)
. . .
\vspace{10pt}
Numerical root finding (Brent)